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Gear Damage Detection Using
Oil Debris Analysis

Paula Dempsey

Abstract

The purpose of this paper was to verify, when
using an oil debris sensor, that accumulated mass
predicts gear pitting damage and to identify a
method to set threshold limits for damaged gears.
Oil debris data was collected from eight experi-
ments with no damage and eight with pitting
damage in the NASA Glenn Research Center's
spur gear fatigue rig. Oil debris feature analysis
was performed on this data. Video images of
damage progression were also collected from six
of the experiments with pitting damage. During
each test, data from an oil debris sensor was mon-
itored and recorded for the occurrence of pitting
damage. The data measured from the oil debris
sensor during experiments with no damage was
used to identify membership functions, which are
required to build a simple fuzzy-logic model.
Using fuzzy-logic techniques and the oil debris
data, threshold limits were defined that discrimi-
nate between stages of pitting wear. Results indi-
cate that accumulated mass combined with fuzzy-
logic analysis techniques is a good predictor of
pitting damage on spur gears.

Introduction

One of NASA's current goals, the National
Aviation Safety Goal, is to reduce the aircraft
accident rate by a factor of five within 10 years
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Figure 1—Spur gear fatigue test rig.

and a factor of 10 within 25 years. One of the
leading factors in fatal aircraft accidents is loss of
control in flight, which can occur due to flying in
severe weather conditions, pilot error and vehi-
cle/system failure. Focusing on helicopters” sys-
tem failures, an investigation in 1989 found that
32% of helicopter accidents due to fatigue failures
were caused by damaged engine and transmission
components (Ref. 1).

In more recent statistics, of the world total of
192 turbine helicopter accidents in 1999, 28 were
directly due to mechanical failures with the most
common failure in the drive trains of gearboxes
(Ref. 11).

A study published in July 1998, in support of
the National Aviation Safety Goal, recommended
areas most likely to reduce rotorcraft fatalities in
the next 10 years. The study of 1,168 fatal and
nonfatal accidents that occurred from 1990-1996
found that, after human factor-related causes of
accidents, the next most frequent cause of acci-
dents was due to various system and structural
failures (Ref. 2). Loss of power in flight caused
26% of this type of accident and loss of control in
flight caused 18% of this type of accident. The
technology area recommended by this study for
helicopter accident reduction was helicopter
health and usage monitoring systems (HUMS)
capable of predicting imminent equipment failure
for on-condition maintenance and more advanced
systems capable of warning pilots of impending
equipment failures.

Helicopter transmission diagnostics are an
important part of a helicopter health monitoring
system because helicopters depend on the power-
train for propulsion, lift and flight maneuvering.
In order to predict transmission failures, the diag-
nostic tools used in the HUMS must provide real-
time performance monitoring of aircraft operating
parameters and must demonstrate a high level of
reliability to minimize false alarms, Various tools
exist for diagnosing damage in helicopter trans-
missions, the most common being vibration tools.
Using vibration data collected from gearbox
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accelerometers, algorithms are developed to
detect when gear damage has occurred (Refs. 16
and 20). Oil debris is also used to identify abnor-
mal wear-related conditions of transmissions. Oil
debris monitoring for gearboxes consists mainly
of off-line oil analysis or plug-type chip detec-
tors. And, although not commonly used for gear
damage detection, many engines have on-line oil
debris sensors for detecting the failure of rolling
element bearings. These on-line, inductance-type
sensors count the number of particles, measure
their approximate sizes, then calculate an accu-
mulated mass (Ref. 10).

The goal of future HUMS is to increase relia-
bility and decrease false alarms. HUMS are not
yet capable of real-time, on-line health monitor-
ing. Current data collected by HUMS
processed after the flight and is plagued with high
false alarm rates and undetected faults. The cur-

is

rent fault detection rate of commercially available
HUMS through vibration analysis is 60%. False
warning rates average one per 100 flight hours
(Ref. 17). This is due to a variety of reasons.
Vibration-based systems require extensive inter-
pretation by trained diagnosticians. Operational
effects can adversely impact the performance of
vibration diagnostic parameters and result in false
alarms (Refs, 5 and 3), Oil debris sensors also
require expert analysis of data. False alarms of oil
debris technologies are often caused by nonfail-
ure debris. This debris can bridge the gap of plug-
type chip detectors. Inductance-type oil debris
sensors cannot differentiate between fault and no-
fault sourced data (Ref. 8).

Several
inductance-type oil debris sensors that measure

companies manufacture on-line,
debris size and count particles (Ref. 10). New
oil debris sensors are also being developed that
measure debris shape and size, and the shape is
used to classify the failure mechanism (Ref. 8).
The oil debris sensor used in this analysis was
selected for several reasons. The first three rea-
sons were sensor capabilities, availability and
researcher experience with this sensor. Results
from preliminary research indicate the debris
mass measured by the oil debris sensor showed
a significant increase when pitting damage
began to occur (Ref. 4).

This sensor has also been used in aerospace
applications for detecting bearing failures in aero-
space turbine engines. From the manufacturers’
experience with rolling element bearing failures,
an equation was developed to set warning and
alarm transmissions. A modified version of this
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Figure 2—Spur gear fatigue rig gearbox.

Table 1-0il d

Bin Bin range, pm | Average size, pm Bin range, um | Average size, pm
1 125-175 150 9 525-575 550

2 175-225 200 10 575-625 600

3 225-275 250 1 625-675 650

4 275-325 300 12 675-725 700

5 325-375 350 13 7125-175 750

6 375-425 400 14 175-825 BOO

7 425475 450 15 825-900 862.5

8 475-525 500 16 900-1,016 958

sensor has been developed and installed in an
engine’s nose gearbox and is currently being
evaluated for an operational AH-64 helicopter
(Ref. 10), which is Boeing Co.'s Apache attack
helicopter. Due to limited access to oil debris data
collected by this type of sensor from gear failures,
no such equation is available that defines oil
debris threshold limits for damaged gears.

The objective of the work reported herein is to
first identify the best feature for detecting gear
pitting damage from a commercially available
on-line oil debris sensor. Then, once the feature is
defined, the objective is to identify a method to
set threshold limits for different levels of pitting
damage to gears. The oil debris data analysis was
performed on gear damage data collected from an
oil debris monitor in the NASA Glenn Research
Center's spur gear fatigue rig.

Test Procedure

Experimental data was recorded from tests
performed in the NASA Glenn rig (Ref. 16). This
rig is capable of loading gears, then running them
until pitting failure is detected. A sketch of the
test rig is shown in Figure 1. Torque is applied by
a hydraulic loading mechanism that twists one
slave gear relative to its shaft. The power required
to drive the system is only enough to overcome
friction losses in the system (Ref. 13). The test
gears are standard spur gears having 28 teeth,
8.89 cm pitch diameters and 0.64 c¢m face widths,
The test gears are run offset to provide a narrow
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effective face width to maximize gear contact
stress while maintaining an acceptable bending
stress. Offset testing also allows four tests on one
pair of gears, Two filters are located downstream
of the oil debris monitor to capture the debris
after the sensor measures il

Fatigue tests were run in a manner that allows
damage to be correlated to the oil debris sensor
data. For these tests, run speed was 10,000 rpm
and applied torque was 72 N-m and 96 N-m. Prior
to collecting test data, the gears were run-in for
one hour at a torque of 14 N-m. The data mea-
sured during this run-in was stored, then the oil
debris sensor was reset to zero at the start of the
loaded test. Test gears were inspected periodical-
ly for damage either manually or using a micro-
camera connected to a videocassette recorder and
monitor. The video inspection did not require
gearbox cover removal. When damage was
found, it was documented and correlated to the
test data based on a reading number, Reading
numbers are equivalent to minutes and can also

Reading Reading Reading
10,622 14,369 15,136

. Bl
S Le

Figure 3—Damage progression of driving/driven tooth 6 for experiment 1.

be interpreted as mesh cycles equal to reading
numbers multiplied by 10*. In order to document
tooth damage, reference marks were made on the
driving and driven gears during installation to
identify tooth 1. The mating teeth numbers on the
driving and driven gears were then numbered
from this reference. Figure 2 identifies the driving
and driven gears with the gearbox cover removed.
Data was collected once per minute from oil
debris, speed and pressure sensors installed on the
test rig using the programs ALBERT, Ames-Lewis
Basic Experimentation in Real Time, co-devel-
oped by NASA Glenn and NASA Ames Research
Center. Oil debris data was collected using a com-
mercially available oil debris sensor that measures
the change in a magnetic field caused by passage
of a metal particle where the amplitude of the sen-
sor output signal is proportional to the particle
mass. The sensor counts the number of particles,
measures their approximate sizes (125-1,016 pm)
and calculates an accumulated mass (Ref. 9).
Shaft speed was measured by an optical sensor
once per shaft revolution. Load pressure was mea-
sured using a capacitance pressure transducer.
The principal focus of this research is detection
of pitting damage on spur gears. Pitting is a
fatigue failure caused by exceeding the surface
fatigue limit of the gear material. Pitting occurs
when small pieces of material break off from the
gear surface, producing pits on the contacting sur-
faces (Ref. 19). Gears are run until pitting occurs
on several teeth. Pitting was detected by visual
observation through periodic inspections on two
of the experiments with pitting damage. Pitting
was detected by a video inspection system on six
of the experiments with pitting damage. Two lev-
els of pitting were monitored, initial and destruc-
tive pitting. Initial pitting is defined as pits less
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i than 0.04 cm in diameter and covering less than

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6
Reading # | Mass, mg | Reading # | Mass, mg | Reading # | Mass, mg| Reading # | Mass, mg | Reading # | Mass, mg | Reading # | Mass, mg
60 1.003 1,573 3.285 58 0 64 0 62 0 60 0
120 1.418 2,199 B.934 2,669 8.69 150 2.233 1,405 4214 2,810 3.192
1,581 5.113 2,296 16.267 2,857 11.889 378 8.297 2,566 7.413 2,885 6.396
10,622 12.533 2.444 26.268 3,029 14.148 518 9.462 4,425 10.811 2,957 8.704
14,369 15.475 2,065 12.132 9,328 11.692
14,430 22468 2,366 13.977 12,061 14.365
14,512 24.586 3,671 17.361 12,368 22.851
14,688 28.451 4,655 23.12
14,846 30.686 4,863 26.227

15,136 36.108

*Note: Highlighted cells identify reading and mass when destructive pitting was first observed.
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approximately 25% of tooth contact area.
Destructive pitting is more severe and is defined as
pits greater than 0.04 cm in diameter and covering
more than approximately 25% of tooth contact
area, If not detected in time, destructive pitting can
lead to catastrophic transmission failure if the gear
teeth crack.
Discussion of Results

The analysis discussed in this section is based
on oil debris data collected during 16 experiments,
8 of which resulted in pitting damage. The oil
debris sensor records counts of particles in bins set
at particle size ranges measured in microns. The
particle size ranges and average particle size are
shown in Table 1. The average particle size for
each bin is used to calculate the cumulative mass
of debris for the experiment. The shape of the
average particle is assumed to be a sphere with a
density of approximately 7,922 kg/m’.

Experiments 1-6 were performed with the
video inspection system installed on the rig. Table
2 lists the reading numbers and the measured oil
debris masses at those readings. The highlighted
cells for each experiment identify the reading
number and the mass measured when destructive
pitting was first observed on one or more teeth. As
this table shows, the amount of mass varied signif-
icantly for each experiment. A representative sam-
ple of the images obtained from the video damage
progression system is shown in Figure 3, The dam-
age progression of tooth 6 on the driving and driv-
en gears for experiment | for selected readings is
shown in this figure. The damage is shown on less
than half of the tooth because the test gears are run
offset to provide a narrow effective face width to
maximize gear contact stress,

Experiments 7 and 8 were performed with visu-
al inspection. Table 3 lists the reading numbers
when inspection was performed and the measured
oil debris masses at these readings. Only initial pit-
ting occurred during experiment 7. During experi-
ment 8, initial pitting was observed at reading
5.181 and destructive pitting at reading 5.314.

No gear damage occurred during experiments
9-16. Oil debris mass measured at test completion
is listed in Table 4. At the completion of experi-
ment 10, 5.453 mg of debris was measured, yet no
damage occurred. This result is more than the
debris measured during experiment 7 (3.381 mg)
when initial pitting was observed. This result and
observations made from the data collected during
experiments when damage occurred made it obvi-
ous that simple linear correlations could not be
used to obtain the features for damage levels from
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Experiment 7 Experiment B Pitting Damage
Reading # Mass, mg Reading # Mass, mg
13,7116 3.381 5,181 6.012 Initial
5314 19.101 Destructive

Table 4-0il debris masses at completion of experiments with no damage

Experiment Reading # Mass, mg | Experiment Reading # Mass, mg
9 29,866 2359 13 25,259 3159
10 20,452 5.453 4 5322 0
1 204 0418 15 21,016 0.125
12 15,654 2.216 16 21,446 0.163

Ol debris mass, mg

P, g amnge
., | | 1 I 1 |

0 2000 4000 00 L 10 (00 16 (00

Reading marmber

12000 14 (M)

Figure 4—0il debris masses at different damage levels.
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Ol debris mass, mg
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Figure 5—Output of fuzzy-logic model.
the oil debris data.

Prior to discussing methods for feature extrac-
tion, it may be beneficial for the reader to get a
feel for the amount of debris measured by the oil
debris sensor and the amount of damage to one
tooth, Applying the definition of destructive pit-
ting, 25% of tooth surface contact area for one
tooth for these experiments is approximately
0.043 cm®. A 0.04 cm diameter pit, assumed
spherical in shape, is equivalent to 0.26 mg of oil
debris mass. This mass is calculated based on the
density used by the sensor software for calculating
mass. If 0.04 cm diameter pits densely covered
25% of the surface area of one tooth, it would be
equivalent to approximately 9 mg. Unfortunately,
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damage is not always densely distributed on 25%
of a single tooth, but is distributed across many
teeth, making accurate measures of material
removed per tooth extremely difficult.

Several predictive analysis techniques were
reviewed to obtain the best feature to predict
damage levels from the oil debris sensor, One
technique for detecting wear conditions in gear
systems is by applying statistical distribution
methods to particles collected from lubrication
systems (Ref. 15). In this reference, mean parti-
cle size, variance, kurtosis and skewness distrib-
ution characteristics were calculated from oil
debris data collected off-line. The wear activity
was determined by the calculated size distribu-
tion characteristics. In order to apply this data to
on-line debris data, calculations were made for
each reading number for each bin. Mean particle
size, relative kurtosis and relative skewness were
calculated for each reading for six of the experi-
ments with pitting damage. It was not possible,
however, to extract a consistent feature that
increased in value from the data for all experi-
ments. This may be due to the random nonlinear

distribution of the damage progression across all |

56 teeth. For this reason, a more intelligent fea-
ture extraction system was analyzed and will be
discussed in the following paragraphs.

When defining an intelligent feature extrac-
tion system, the gear states that a person plans to
predict must be defined. Due to the overlap of the
accumulated mass features, three primary states
of the gears were identified: OK (no gear dam-
age), inspect (initial pitting) and damage
(destructive pitting). The data from Table 2 was
plotied in Figure 4. Each plot is labeled with
experiment numbers 1-6, The triangles on each
plot identify the inspection reading numbers. The
triangles circled indicate the reading number
when destructive pitting was first observed. The
background color indicates the OK, inspect and
damage states. The overlap between the states is
also identified with a different background color.
The changes in states for each color were defined
based on data shown in Tables 2-4. The mini-
mum and maximum debris masses measured dur-
ing experiments 1-6 when destructive pitting was
first observed were used to define the upper limit
of the inspect scale and the lower limit of the
damage scale. respectively. The maximum
amount of debris measured when no damage
occurred (experiment 10) was above the mini-
mum amount of debris measured when initial pit-
ting occurred (experiment 7). The former was
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used as the lower limit of the inspect state. The
next largest mass measured when no damage
occurred (experiment 13) was used as the upper
limit of the OK scale.

Fuzzy logic was used to extract an intelligent
feature from the accumulated mass measured by
the oil debris sensor. Fuzzy logic was chosen
based on the results of several studies to compare
the capability of production rules, fuzzy logic and
neural nets. One study found fuzzy logic the most
robust when monitoring transitional failure data
on a gearbox (Ref. 7). Another study comparing
automated reasoning techniques for condition-
based maintenance found fuzzy logic more flexi-
ble than standard logic because it made
allowances for unanticipated behavior (Ref. 14).
Fuzzy logic applies fuzzy set theory to data,
where fuzzy set theory is a theory of classes with
unsharp boundaries and the data belongs in a set
based on its degree of membership (Ref. 20). The
degree of membership can be any value between
0and 1.

Defining the fuzzy logic model requires inputs
(damage detection features), outputs (state of
gear), and rules. Inputs are the levels of damage,
and outputs are the states of the gears.
Membership values were based on the accumu-
lated mass and the amount of damage observed
during inspection. Membership values are
defined for the three levels of damage: damage
low, damage medium and damage high. Using
the mean-of-the-maximum (MOM), fuzzy-logic
defuzzification method, the oil debris mass mea-
sured during the six experiments with pitting
damage was entered into a simple fuzzy-logic
model created using commercially available soft-
ware (Ref. 6). The output of this model is shown
on Figure 5. Threshold limits for the accumulat-
ed mass are identified for future tests in the spur
gear fatigue test rig. Results indicate accumulat-
ed mass is a good predictor of pitting damage on
spur gears and fuzzy logic is a good technique for
setting threshold limits that discriminate between
states of pitting wear.

Conclusions

The purpose of this research was to first veri-
fy that accumulated mass predicts gear pitting
damage when using an inductance-type, on-line
oil debris sensor. Then, using accumulated mass
as the damage feature, the purpose was to identi-
fy a method to set threshold limits for damaged
gears that discriminate between different levels
of pitting damage. In this process, the member-
ship functions for each feature state were defined
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based on the level of damage. From this data, and
a simple fuzzy-logic model, accumulated mass
measured by an oil debris sensor combined with
fuzzy-logic analysis techniques can be used to
predict transmission health. Applying fuzzy logic
incorporates decision making into the diagnostic
process that improves fault detection and
decreases false alarms.

This approach has several benefits compared
with using the accumulated mass and an arbitrary
threshold limit for determining if damage has
occurred. One benefit is that it eliminates the
need for an expert diagnostician to analyze and
interpret the data since the output would be one
of three states: OK, inspect and shutdown. Since
benign debris may be introduced into the system
due to periodic inspections, setting the lower
limit above this debris level will minimize false
alarms, In addition to these benefits, a more
advanced system can be designed with logic built
in to minimize these operational effects. Future
tests are planned to collect data from gears with
initial pitting to better define the inspect region of
the model and the severity of gear damage. Tests
are planned for gears of different sizes to deter-
mine if a relationship can be developed between
damage levels and tooth surface contact area to
minimize the need for extensive tests to develop
the membership functions for the threshold levels.

Update

Due to the success of oil debris analysis in
predicting damage on the spur gear fatigue rigs,
an oil debris sensor was installed on the NASA
spiral bevel gear test facility, and further tests
were run. Details of that research are found in the
report “Spiral Bevel Gear Damage Detection
Using Decision Fusion Analysis,” available at
www.gre.nasa.gov. Q

This article also appeared in the proceedings of
the 14" International COMADEM (Condition

Monitoring & Diagnostic Engineering Manage-
ment) Congress, September 4-6, 2001 in
Manchester, UK.
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