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Management Summary
In comparison with the traditional gear design approach based on preselected, typically standard generating rack 

parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that 
include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, 
manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear mea-
surement methodology. 

This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical, 
external and internal gears with symmetric and asymmetric teeth. 

Measurement 
of Directly Designed 

Gears with  
Symmetric and 

Asymmetric Teeth
Dr. Alexander L. Kapelevich

(This paper was first presented at the 2010 VDI International Conference on Gears—VDI Wissensforum).

          
a                                                                             b 

 
Figure 1—Gear tooth profile: a = external gear; b = internal gear; da = tooth tip circle diameter; db = base circle diameter; 
df = form circle diameter; d = reference circle diameter; S= circular tooth thickness at the reference diameter; a = involute 
profile (or pressure) angle at the reference diameter; v = involute intersection profile angle; n = number of teeth; subscripts 
“d” and “c” are for the drive and coast flanks of the asymmetric tooth.
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continued

Measurement Over (Between) Balls or Pins
Spur gears. The Direct Gear Design method (Refs. 1–2) 

presents the gear tooth by two involutes of two base circles 
with the angular distance between them and tooth tip circle 
arc (Fig.1). The equally spaced n teeth form the gear. The 
fillet between teeth is designed independently, thus providing 
minimum bending-stress concentration and sufficient clear-
ance with the mating tooth-tip in mesh. If the two base circles 
are identical, the gear teeth are symmetric; if they are differ-
ent, the teeth are asymmetric. 

Measurement over (between) balls or pins for spur gears is 
defined based on the given: 

• Number of teeth n 
• Reference circle diameter d 
• Involute profile angles at the reference diameter a

d
  

 and a
c
; for symmetric gears involute profile angle at  

 the reference diameter a = a
d
 = a

c
 

• Circular tooth thickness at the reference diameter S 
• Gear tooth-tip diameter d

a
 

Initially selected ball or pin diameter D can be adjusted 
based on the calculation results. The relation between angles 
v
d
 and v

c
, and a

d
 and a

c
 is: 

 
(1) 

where: d
bd

 = d x cosa
d
 and d

bc
 = d x cosa

c
.

Angles v
d
 and v

c
 are defined from equations: 

For external gear:

(2)

For internal gear:

(3)

where: inv(x) = tan(x) – x is involute function and x is involute 
profile angle in radians. The centers of the ball or the pin are 
located on the diameter d

p
 (Fig. 2), which is: 

(4)

where the angles a
pd

 and a
pc

 are defined by equations (Ref. 3):   

For external gear:

(5)

For internal gear:

(6)

The ball or pin touches the gear tooth in the points T
d
 and 

T
c
. They should be always located on the involute flanks. This 

condition is described by the following equation:   

For external gears:

(7)  

and:

(8)

For internal gears:

(9) 

and:

(10) 

     

a              b 

dbd  

 
 

 

 

 

 

 

  

 

 

=
cosν

d = =
cosν

c

cosα
d

cosα
c

dbd
dbc

, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ 2 x S

d
, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ π     S

d
,2 x 

n
–



,

d
p =

dbd
cosα

pd

=
dbc

cosα
pc

,


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
)+       +D

d
bd

,D
d

bc

– 2π
 n


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
) –       –D

d
bd

·D
d

bc

arccos
d

fd

d
bd

 α
td
 arccos

d
a

d
bd

dbd  

 
 

 

 

 

 

 

  

 

 

=
cosν

d = =
cosν

c

cosα
d

cosα
c

dbd
dbc

, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ 2 x S

d
, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ π     S

d
,2 x 

n
–



,

d
p =

dbd
cosα

pd

=
dbc

cosα
pc

,


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
)+       +D

d
bd

,D
d

bc

– 2π
 n


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
) –       –D

d
bd

·D
d

bc

arccos
d

fd

d
bd

 α
td
 arccos

d
a

d
bd

dbd  

 
 

 

 

 

 

 

  

 

 

=
cosν

d = =
cosν

c

cosα
d

cosα
c

dbd
dbc

, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ 2 x S

d
, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ π     S

d
,2 x 

n
–



,

d
p =

dbd
cosα

pd

=
dbc

cosα
pc

,


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
)+       +D

d
bd

,D
d

bc

– 2π
 n


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
) –       –D

d
bd

·D
d

bc

arccos
d

fd

d
bd

 α
td
 arccos

d
a

d
bd

dbd  

 
 

 

 

 

 

 

  

 

 

=
cosν

d = =
cosν

c

cosα
d

cosα
c

dbd
dbc

, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ 2 x S

d
, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ π     S

d
,2 x 

n
–



,

d
p =

dbd
cosα

pd

=
dbc

cosα
pc

,


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
)+       +D

d
bd

,D
d

bc

– 2π
 n


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
) –       –D

d
bd

·D
d

bc

arccos
d

fd

d
bd

 α
td
 arccos

d
a

d
bd

dbd  

 
 

 

 

 

 

 

  

 

 

=
cosν

d = =
cosν

c

cosα
d

cosα
c

dbd
dbc

, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ 2 x S

d
, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ π     S

d
,2 x 

n
–



,

d
p =

dbd
cosα

pd

=
dbc

cosα
pc

,


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
)+       +D

d
bd

,D
d

bc

– 2π
 n


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
) –       –D

d
bd

·D
d

bc

arccos
d

fd

d
bd

 α
td
 arccos

d
a

d
bd

dbd  

 
 

 

 

 

 

 

  

 

 

=
cosν

d = =
cosν

c

cosα
d

cosα
c

dbd
dbc

, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ 2 x S

d
, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ π     S

d
,2 x 

n
–



,

d
p =

dbd
cosα

pd

=
dbc

cosα
pc

,


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
)+       +D

d
bd

,D
d

bc

– 2π
 n


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
) –       –D

d
bd

·D
d

bc

arccos
d

fd

d
bd

 α
td
 arccos

d
a

d
bd

dbd  

 
 

 

 

 

 

 

  

 

 

=
cosν

d = =
cosν

c

cosα
d

cosα
c

dbd
dbc

, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ 2 x S

d
, 

inv(ν
d
)+ inv(ν

c
)= inv(α

d
)+ inv(α

c
)+ π     S

d
,2 x 

n
–



,

d
p =

dbd
cosα

pd

=
dbc

cosα
pc

,


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
)+       +D

d
bd

,D
d

bc

– 2π
 n


 

inv(α
pd

) + inv(α
pc

)= inv(ν
d
) + inv(ν

c
) –       –D

d
bd

·D
d

bc

arccos
d

fd

d
bd

 α
td
 arccos

d
a

d
bd

 

 

 

 
 

; arccos
d
fc

d
bc α

tc
 arccos

d
a

d
bc

arccos
d
a

d
bd α

td
arccos

d
fd

d
bd

arccos
d
a

d
bc α

tc
arccos

d
fc

d
bc

 

 

 

 

 

 

 

M = d
p
 + D;

M = d
p
 . cos       + D.

2n
π





 

 

 

 
 

; arccos
d
fc

d
bc α

tc
 arccos

d
a

d
bc

arccos
d
a

d
bd α

td
arccos

d
fd

d
bd

arccos
d
a

d
bc α

tc
arccos

d
fc

d
bc

 

 

 

 

 

 

 

M = d
p
 + D;

M = d
p
 . cos       + D.

2n
π





Figure 2—Ball or pin position: a = external gear; b = internal gear; D = ball or pin diameter; P = center of the ball or pin; apd
and apc =  involute profile angles at the center of the ball or pin; dp = ball or pin center location diameter; Td and Tc = contact 
points of the ball or pin with the tooth drive and coast tooth flanks; atd and atc = involute profile angles at the contact points. 
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The measurement over two balls or pins for the external 
gear is for even number of teeth (Fig. 3a): 

(11)

For odd number of teeth (Fig. 3b): 

(12)

The measurement between two balls or pins for the inter-
nal gear is for even number of teeth (Fig. 4a):  

(13) 

For odd number of teeth (Fig. 4b): 

(14)

For inspection convenience the measurement over balls or 
pins for external gears should be M > d

a
 and the measure-

      
a                                                                    b 

 

 

 

 

 
 

; arccos
d
fc

d
bc α

tc
 arccos

d
a

d
bc

arccos
d
a

d
bd α

td
arccos

d
fd

d
bd

arccos
d
a

d
bc α

tc
arccos

d
fc

d
bc

 

 

 

 

 

 

 

M = d
p
 + D;

M = d
p
 . cos       + D.

2n
π





    
a                                                                                      b 

 

ment between balls or pins for internal gears should be M < 
d
a
. These and conditions (Eqs. 7–10) define the ball or pin

diameter. 
Helical gears. Measurement over (between) balls or over 

pins for helical gears is defined based on the given: 
• Number of teeth n 
• Reference circle diameter d 
• Normal involute profile angles at the reference dia-
 meter a

nd
 and a

nc
; for symmetric gears a

n
 = a

nd
 =  

 a
nc

• Normal circular tooth thickness at the reference dia- 
 meter S

n
 

• Helix angle at the reference diameter b 
• Gear tooth-tip diameter d

a
 

Cylindrical pins cannot be used to measure the internal 
helical gears, because the pin surface cannot be tangent to the 
internal helical gear flanks. The transverse tooth thickness at 
the reference diameter S is:  

(15) 
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Figure 3—Measurement over balls or pins for external gears: a = even number of teeth; b = odd number of teeth.

Figure 4—Measurement between balls or pins for internal gears: a = even number of teeth; b = odd number of teeth. 
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continued

The transverse involute profile angles at the reference  
diameter a

d
 and a

c
 are: 

(16) 

(17)

The helix angles at the drive and coast base diameters b
bd 

and b
bc

 are: 

(18)

(19) 

The centers of the ball or the pin (for external gear with 
even number of teeth) are located on the diameter d

p
 that, de-

fined by the equation (4), where the angles a
pd

 and a
pc

 are 
defined by: 

For external helical gear: 

(20)  

For internal helical gear (for measurement over balls): 

(21)     

The ball or pin diameters should also satisfy Equations 
7–10. Measurements over two balls for external helical gears 
(Fig. 5) and between two balls for internal helical gears (Fig. 
6) are defined by Equations 11–13 and 14, accordingly. 

Measurement over two pins for external helical gears with 
even number of teeth is also defined by Equation 11. 

For external helical gears with odd number of teeth, the 
shortest distance L between the pin centers does not lay in the 
transverse section of the circle diameter d

p
. This distance and 

measurement over two pins for external helical gears with odd 
number of teeth definition is described in Reference 4. The 
transverse distance L

t
 between the ball centers, in case of the 

odd number of teeth, is always greater than the distance L that 
is (Fig.7):

(22)                   

where the helix angle at the pin center diameter bp is:  

(23)                   

and the angle l is a solution of the equation:  

(24)            

Then the measurement over two pins for external helical 
gears with odd number of teeth (Fig. 8) is:   

Figure 5—Measurement over balls of the external helical 
gear. 

Figure 6—Measurement between balls of the internal helical 
gear.

(25)           

Span Measurement
Span measurement is the measurement of the distance 

across several teeth, along a line tangent to the base cylinder 
(Ref. 5). This kind of inspection is used for gears with ex-
ternal teeth. It is also applied only for gears with symmetric 
teeth, because it is impossible to have a common tangent line 
to two concentric base cylinders of asymmetric tooth flanks. 

Span measurement over n
w
 teeth (Fig. 9) is:  

(26)      
where S

b
 is the tooth thickness at the base diameter:  

(27)           
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p
b
 is the circular pitch at the base diameter  

(28)           

n
w
 is number of teeth for span measurement  

(29)             
n
wmax

 is maximum number of teeth  

(30)                 

Calipers, micrometers or special gages are used for span 
measurement. 

CMM Gear Inspection
CMM gear inspection (Fig. 10) allows mapping the whole 

.        
a                                                                                        b 

 

Figure 10—CMM measurement of asymmetric gear. 

Figure 7—Definition of the distance between the pin centers 
for the helical gears with odd number of teeth.

Figure 8—Measurement over pins of the external helical gear 
with odd number of teeth. 

Figure 9—Span measurement; a = spur gear; b = helical gear. 
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surface of all teeth including the fillet profiles. However, it 
is typically used to control the involute accuracy. Although 
the gear tooth fillet is an area of maximum bending stress 
concentration, its profile and accuracy are marginally defined 
on the gear drawing by typically very generous root diameter 
tolerance and, in some cases, by the minimum fillet radius. 
The Direct Gear Design method optimizes the gear tooth fil-
let profile for minimum bending stress concentration (Ref. 6). 
For such critical- application gears the tooth fillet profile must 
be clearly specified, toleranced and inspected. 

The whole tooth (including the fillet) CAD profile at the 
average material condition presented as the B-spline or the 
tangent arcs accompany the gear drawing for the CMM in-
spection. The data set also includes the involute flank and 
fillet profile tolerances that are established by the designer 
depending on the gear accuracy and also the manufacturing 
technology. The CMM is programmed to indicate if the in-
spected tooth profile points lay within the corridor defined by 
the CAD tooth profile ± profile tolerance. A similar inspec-
tion technique is used to inspect curved surfaces, for example, 
of the airfoil air compressor or gas turbine blades. 

Summary and Conclusion
This paper has covered the measurement specifics of the 

symmetric and asymmetric gears that are designed using the 
Direct Gear Design method. They are:

• A defined measurement over (or between) balls and  
 pins for external and internal gears 

• A defined span measurement for external gears with  
 symmetric teeth 

• Descriptions of some CMM inspection issues for  
 directly designed gears

References: 
1. Kapelevich, A.L. “Geometry and Design of Involute Spur 
Gears with Asymmetric Teeth,” Mechanism and Machine 
Theory, 35 (2000), 117–130. 
2. Kapelevich, A.L. and R.E. Kleiss. “Direct Gear Design for 
Spur and Helical Gears,” Gear Technology, September/Octo-
ber 2002, 29–35. 
3. Kapelevich, A.L. “Measurement Over Pins of the Gears 
with Asymmetric Teeth (in Russian),” Mashinovedenie, (6) 
(1986) 109–110. 
4. Nezhurin, I.P. “Calculation of the Measurement Over pins 
of the Helical Gears with Odd Number of Teeth,” Vestnik 
Mashinostroeniya, (2) 1961, (in Russian). 
5. Standard ANSI/AGMA 1012–F90, Gear Nomenclature: 
Definitions of Terms with Symbols. 
6. Kapelevich, A.L. and Y.V. Shekhtman. “Tooth Fillet Pro-
file Optimization for Gears with Symmetric and Asymmetric 
Teeth,” AGMA Fall Technical Meeting, San Antonio, Texas, 
October 12–14, 2008, (08FTM06), republished in Gear Tech-
nology, September/October 2009, 73–79.

 

Presented materials should be helpful for manufacturing 
custom gears with symmetric and asymmetric teeth. 
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