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Introduction
The gear industry is under continual pres-

sure to increase power density and reliabil-
ity of geared transmissions while at the same 
time reducing costs. To meet these demands, 
new materials and manufacturing processes 
are being evaluated on a continuing basis. 
The first step in this evaluation is to conduct 
screening tests to compare the performance 
of gears fabricated using the new materials 
and processes with that of gears manufactured 
using the incumbent materials and processes. 
However, once promising new materials and 
processes have been identified, the issue rapid-
ly becomes one of developing accurate design 
data to permit effective utilization of these new 
materials and processes. The accepted practice 
in the gear industry is that accurate design data 
be derived from running gear tests.

Methodology for Translating Single-
Tooth Bending Fatigue Data to be 

Comparable to Running Gear Data
D.R. McPherson and S.B. Rao

Running gears can fail via a number of 
modes, many of which are shown generically 
in Figure 1. Screening tests are conducted in a 
manner that allows evaluation of performance 
relative to one of these modes while avoiding 
damage via the others. A common approach is 
to evaluate bending strength using the single-
tooth bending fatigue test (STF) and surface 
durability using the rolling/sliding contact 
fatigue test (RCF). From the bending strength 
point of view, this ensures that tests intended 
to evaluate bending strength will not have to 
be terminated due to surface durability (pitting, 
wear or scoring) failures. The design of run-
ning gear test specimens to evaluate bending 
strength (or surface durability) requires a good 
initial estimate of bending strength so that the 
specimens can be designed to fail by the target 
failure mode at about the desired life without 

Figure 1—Gear failure map.
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the STF test. In the STF test, several (normally 
at least four, often eight, sometimes up to 
sixteen) teeth are tested on each gear, one at a 
time, and each represents a separate data point.  
In running gears all of the teeth are tested on 
each gear in the same time, and the failure of 
the first tooth represents failure of the gear. 
Much of this paper is dedicated to presenting a 
method to account for this difference.

The last correlation issue, and the most 
difficult to explain and quantify, is related to 
confidence. It is not economically feasible to 
conduct enough screening tests with new mate-
rials and manufacturing processes to be able 
to draw many statistically reliable inferences 
from the result. The object of most single-
tooth fatigue testing is to determine the mean 
load resulting in failure at the run-out number 
of cycles. To make the best possible estimate 
of this load with a reasonable number of tests, 
recent test programs have been conducted 
using a two-load approach. Enough tests are 
conducted in an up-and-down sequence to 
find two loads that result in a non-zero and 
non-unity failure rate. In other words, at each 
load some of the tested teeth break by the run-
out limit while others do not. Further tests are 
conducted until six have been completed at 
each of these loads. Ideally, one of the failure 
rates at these two loads will be above 0.5 and 
the other below 0.5. Analysis of the result 
will allow the load resulting in 50% failure at 
the run-out limit to be determined with some 
statistical reliability. The range within which 
the load to result in 50% failures could vary is 
illustrated by the confidence bands in Figures 
5 and 9.  In the test programs these figures are 
drawn from, tests were conducted following an 
up-and-down sequence and less than six tests 

undue risk of failure by unwanted modes. This 
paper describes a method developed by the 
Gear Research Institute to extrapolate running 
gear bending strength data from STF results 
that is invaluable in comparing bending per-
formance of different materials and processes. 
This methodology has also proven useful in 
the design of running gear bending strength 
test specimens. It is strongly recommended 
that data extrapolated by this or other similar 
methodologies should not be used as the basis 
for the design of gears for applications. 

STF Tests Compared 
to Running Gears

In the STF test, a specimen gear is held in 
position and one tooth at a time is tested by 
applying a cyclic load normal to a fixed point 
on the flank. Care is taken in the selection of 
the load point and in the design of the loading 
appliance to ensure that the surface of the test 
tooth is not locally overloaded at the point of 
contact. Thus, the influences of all the sur-
face durability aspects of testing running gears 
are eliminated, and tests may be continued as 
long as needed to achieve failure via bending. 
The cyclic load is varied between the selected 
maximum and some fixed percentage of that 
maximum (10% or 5%, depending on the com-
pliance of the system) to maintain preload on 
the system. This limits the distance the hydrau-
lic loading cylinder must travel and permits 
testing at comparatively high frequencies. A 
typical STF fixture, with specimen installed, is 
shown in Figure 2.

These test conditions yield three catego-
ries of correlation issues that must be taken 
into account when translating STF test results 
to running gear test results. The easiest to 
explain is the correlation issue of the stress 
range experienced by running gear teeth com-
pared to STF test teeth. As noted above, in 
the STF test, stress varies from 10% (or 5%) 
of the maximum up to the maximum. In run-
ning gears, the load is completely released as 
the tooth passes out of mesh. In some cases, 
depending on geometry and operating speed, 
the critical area in the root fillet is subjected 
to a small amount of compression as the next 
tooth is loaded. Thus stress varies from zero 
(or a small negative percentage of the maxi-
mum) to the maximum.

The next correlation issue is due to the fact 
that the teeth that will break on running gears 
represent only the weakest part of the statisti-
cal population defined by the teeth tested in 

Figure 2—Gear Research Institute’s standard STF specimen mounted in fixture.
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converted to bending stress. Figure 3 shows 
a spur gear tooth with a point load applied at 
the highest point of single-tooth contact. This 
point of loading corresponds to the highest 
bending stress when there is effective load 
sharing between gear teeth. Specimen gears 
used in rig tests should have effective load 
sharing, so this is the appropriate point of load-
ing for determining bending stress for running 
gear specimens used in rig tests. For gears test-
ed in single-tooth bending fatigue, the actual 
point of loading established by the test fixture 
is used in calculating bending stresses.

The Lewis parabola is drawn from the 
point the load line intersects the center of the 
gear tooth and is tangent to the root fillet. The 
methods used to lay out this parabola vary, 
depending on how the root form is gener-
ated, and the full particulars are lengthy and 
presented in detail elsewhere (Ref. 3). The 
critical height and width are determined from 
the Lewis parabola as shown in Figure 3. The 
angle between the load line and a normal to the 
tooth center is termed the load angle (it differs 
from the pressure angle at the point of load-
ing because of the thickness of the tooth). The 
bending stress is thus:

See pg 44 for Equation 1

Where 
s = Critical Width from Lewis Parabola
h = Critical Height from Lewis Parabola

See pg 44 for Equation 2

  r = Minimum Fillet Radius  r = Minimum Fillet Radius  r
H  = 0.331H  = 0.331H –0.436 x (Nominal Pressure Angle           
  –Radians)
L  = 0.334–0.492 x (Nominal Pressure Angle  L  = 0.334–0.492 x (Nominal Pressure Angle  L
  –Radians)
M = 0.261–0.545 x (Nominal Pressure Angle  M = 0.261–0.545 x (Nominal Pressure Angle  M
  –Radians)

This equation for bending stress can be 
derived from first principles or from AGMA 
standards (Refs. 3, 4) by taking the forms of 
relevant formulas pertinent to spur gears and 
setting all design factors at unity. A similar 
formula could be developed for helical gears.

For a given gear design and loading con-
dition, such as the Gear Research Institute’s 
Standard STF specimen, loaded in its standard 
fixture, Equation 1 can be simplified to the fol-
lowing form:

Figure 3—Layout of spur gear showing loading and Lewis parabola.�
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were conducted at most of the loads. If there 
were two loads at which six tests had been 
conducted, the range would correspond to an 
approximate 90% confidence interval.

What the result of this limited number of 
tests does not provide with any reliability is 
the standard deviation of the load that results 
in failure at the run-out limit. Methods are pre-
sented in the literature to determine standard 
deviation (Refs. 1, 2); however, to accomplish 
this with statistical reliability requires that two, 
four or more times as many tests be conducted. 
A good knowledge of the standard deviation is 
needed to adjust loads to account for different 
failure rates, such as are encountered with run-
ning gears where all of the teeth are subjected 
to loading compared to one tooth at a time 
with single-tooth fatigue testing. The empirical 
method presented here avoids this need for an 
accurate value of standard deviation.

Conversion of Load to Stress
Before comparisons can be made between 

tests with specimens having differing geom-
etries—such as those used in STF and run-
ning gear tests—the applied test loads must be 

Equation 1.

Equation 2.
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     Bending Stress = Load x Stress Factor        Bending Stress = Load x Stress Factor        Bending Stress = Load x Stress Factor (2)

Where the stress factor comprises all the 
items on the right side of Equation 1 except 
load.  For the Gear Research Institute’s stan-
dard STF test, this becomes:
Face Width 1.000 inch
Load Angle 24.8 degree
h  0.286 inch
s  0.335 inch
K

f
K

f
K   1.53

f
  1.53

f

Stress Factor 19.3 psi bending stress per  
 pound load

Correlation Issues
 The three correlation issues discussed ear-

lier are now treated in detail.
Correction for Allowable Stress Range. 

In the Gear Research Institute’s standard STF 
test, the load is varied from 10% to 100% of 
the maximum load. These R = 0.1 stresses are 
converted to the required R ratio stresses via 
ASR diagrams. The ASR diagrams are con-
structed to be representative of brittle materials 
following the method described in Reference 
5. The pertinent equations are as follows:

See pg 45 for Equation 3                            

See pg 45 for Equation 4

(Ultimate stress is taken as the bending 
stress corresponding to the linear deviation 
point load from the fast bend single overload 
test.)

(5)

(6)

These equations can be algebraically 
manipulated to yield an expression for any 
desired R ratio stress. Strain gage calibration 
with the Gear Research Institute’s standard 
running gear bending test specimens show that 
the stress varies from negative 20% to posi-
tive 100% when the gears are tested at stan-
dard operating speed (Ref. 6). Thus, R load-
ing for the examples shown here is equal to 
negative 0.2. By way of example, an allowable 

stress range diagram constructed in the manner 
described above is shown for the running gear 
G50 stress for the first example set of data.

Statistical Analysis—Accounting for 
Differing Populations. The statistical step 
from failures of individual teeth to failures 
of gears is made using a probability diagram 
comparing maximum applied test load (abscis-
sa) and failure rate in terms of the variate of a 
probability distribution (ordinate). The exact 
nature of the scales to be used on this diagram 
is not intuitively obvious. It is customary to 
make the scale on the life axis of stress-life 
diagrams logarithmic; however, the scale on 
the stress axis may be either linear or loga-
rithmic. Based on this precedent, the scale on 
the load axis for the diagram to be constructed 
here could be either linear or logarithmic. The 
Weibull distribution is frequently used to char-
acterize fatigue; however, it is customary to 
use the normal probability distribution to ana-
lyze failure rates at the fatigue endurance limit. 
Thus, there are four reasonable sets of scales 
that could be used on this diagram.

ANSI/AGMA 2001-C95 gives a table of 
reliability factors to relate allowable stress and 
various failure rates (Ref. 4). The values in this 
table represent experience with gears and show 
the magnitude of difference in applied stress to 
result in progressively lower failure rates. The 
reliability factor appears in the denominator of 
the rating equations. Thus the reciprocal of the 
table values is proportional to the stress differ-
ence associated with the difference in failure 
rate.  These are failure rates for gears each 
having a definite number of teeth. The STF 
results are for tests of individual teeth. To be 
helpful in determining the scales to be used on 
the diagrams constructed here, this information 
must be converted to failures rates of teeth. 
The Gear Research Institute’s standard speci-
men that has been used in running gear tests 
has 18 teeth, making this a convenient number 
of teeth-per-gear for the calculations presented 
here. In this case, one failure in two gears test-
ed corresponds to one failure in 36 teeth tested 

Equation 3.

Equation 4.
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sented here were based on normal probability. 
The best fit with reliability factors and normal 
probability was with the linear stress (or load, 
since it is proportional to stress) scale; thus, 
the diagrams presented here use these scales.

Maximum test load is used in constructing 
the diagrams presented here. This is an artifact 
of the manner in which the method was devel-
oped; load could just as easily be converted to 
stress before the statistical analysis as after (as 
is done here). Test results are sorted by load 
and the failure rate is determined at each load. 
These results are plotted in terms of normal 
probability variate value corresponding to the 
failure rate at each load tested. These points 
are plotted as hollow diamonds in the sample 
diagrams presented later in this paper. The 
normal probability variate corresponding to 
100% failures is positive infinity, that cor-
responding to 0% failures is negative infin-
ity. In order to keep the scale of the diagram 
reasonable, these values are plotted as positive 
three and negative three, respectively, and not 
used in fitting a line to the data representing a 
mixture of failures and no failures. Because of 
this, it is necessary to have data from at least 
two loads that resulted in a mixture of failures 
and no failures.

The step from failures of individual teeth 
to failures of gears is based on fitting a line 
through these data points. When a line is fit 
to data using a least squares fitting technique, 
it can be shown that one point on the line will 
always be the average point of the data. The 
average point of the data is noted mean failure 
point on the charts presented here, and is plot-
ted as a solid diamond. The abscissa for this 
point is defined as the average maximum load 
in tests at loads that resulted in a mixture of 
failures and no-failures. The ordinate is defined 
as the NPV value corresponding to the average 
failure rate in these tests. The tests are summed 
individually to account for different numbers 
of tests at each load. A line is fit through the 
mean failure point and is extrapolated down 
to normal probability variate equal to negative 
1.916, which corresponds to one failure in 36 
teeth or one failure in two 18-tooth gears to 
find the 50% failure load corresponding to run-
ning gears. The exact slope of this line cannot 
reasonably be determined with the limited data 
typically available; the method used to fit it is 
discussed in the following section.

Statistical Analysis—Accounting for 
Confidence. In most instances, three to six 
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Various Statistical Interpretations of
AGMA Reliability Factor

(One Tooth = One Test, 18 Teeth/Gear)
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Figure 4—Various statistical interpretations of AGMA reliability factor (1 tooth = 1 test, 18 
teeth/gear).

and the corresponding normal probability vari-
ate is negative 1.916 (contrasted to considering 
failures of gears where one failure in two gears 
tested results in a failure rate of 0.5 and a nor-
mal probability variate of 0.000).

Figure 4 shows the reciprocals of the values 
from Table 11 in Reference 4 scaled four ways.  
The abscissa shows these reciprocals plotted 
on a linear scale and a logarithmic scale. The 
ordinate shows the failure rate values divided 
by 18 to represent failures of individual teeth, 
plotted against normal probability variate and 
Weibull probability variate. Normal probabil-
ity variate is x from Equation 7, and is shown x from Equation 7, and is shown x
as “x” in normal probability tables.

(7)

Weibull probability variate is given by 
Equation 8.

(8)

The relationships in Figure 4 that are clos-
est to linear are the ones with the logarithmic 
stress scale versus Weibull probability and the 
linear stress scale versus normal probability. 
Both have roughly equally good fit to a linear 
regression. Since normal probability has been 
used frequently to characterize failure rates 
at the fatigue endurance limit, the charts pre-
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teeth were tested at each load. Thus the con-
fidence in the ordinate values is limited. An 
approximate confidence interval is constructed 
based on the limiting normal probability vari-
ate values if one additional test were to be 
conducted at each load. The upper bound rep-
resents what the failure rate would have been 
if the additional test failed, the lower bound 
that if it did not fail. When all teeth tested at 
a given load fail, the corresponding normal 
probability variate value would be positive 
infinity. In most cases, no more than six tests 
are conducted at loads that result in 100% fail-
ure. Thus, if one more tooth were tested that 
did not break by the designated run-out limit, 
the failure rate would be six of seven and the 
corresponding limiting (minimum) normal 
probability variate value would be on the order 
of positive one. As noted previously, infinite 
values of normal probability variate are not 
useful for fitting lines to the data; however, the 
limiting values at the bottom of the range (or 
top of the range if several teeth are tested at a 
common load and all do not fail) are useful, as 
described below.

For each set of STF test results, two sta-
tistical diagrams are constructed. The first 
(labeled Step One) is focused on the load range 
used in STF tests. A line is fit by eye judgment 
through the mean failure point with a slope 
that seems to fit the data, and the 50% failure 
load is determined from this line. Standard 
deviation of the mean test load for the STF 
condition (sigma) is the reciprocal of the slope 
of this line. Given the size of the confidence 
intervals at each point (see Figures 5 and 9), it 
is clear that standard deviation cannot be esti-
mated within a factor of two with any statisti-
cal reliability, given the number of tests con-
ducted. Rather than attempt to extract standard 
deviation from too little data, it is assumed that 
sigma (for the STF test condition) is a fixed 
percentage of the 50% failure load. Based 
on examination of as many STF data sets as 
possible, with tests conducted over a span 
in excess of 10 years, this value for sigma is 
taken as 10% of the 50% failure load.

A second statistical diagram (labeled Step 
Two) is then constructed for each set of STF 
test results. A wider range of maximum loads 
is included in this diagram, and it is used to 
find the 1% failure and/or minus three-sigma 
load. A line is drawn through the mean failure 
point at the slope determined in Step One. This 
line is labeled Mean Fit—Load versus Failure 

Rate. A second line is drawn parallel to the 
first located to encompass all (or most) of the 
confidence intervals for each data point. (In 
some cases, the confidence intervals diverge 
further below the mean fit line than they do 
above. In these cases, the second line is drawn 
as far above the first as one would have to 
be drawn below it to encompass the confi-
dence intervals.) This second line is labeled 
Conservative Fit—Load versus Failure Rate. 
The idea behind using two lines is to attempt to 
untangle scatter inherent in fatigue test results 
from change in failure rate with changing load, 
and to ultimately make a consistently conser-
vative estimate of 1% failure and/or minus 
three-sigma bending strength.

The 50% failure load for running gears 
is selected from the Mean Fit—Load versus 
Failure Rate line. As noted previously, with 
the Gear Research Institute’s eighteen-tooth 
specimen, 50% failure corresponds to one fail-
ure in 36 teeth tested, and the NPV is negative 
1.916. Thus, the 50% failure load for running 
gears is the point on the Mean Fit—Load ver-
sus Failure Rate line at NPV equal to nega-
tive 1.916.  The 10% failure load for run-
ning gears is selected from the Conservative 
Fit–Load versus Failure Rate line. With the 
18-tooth specimen, 10% failure corresponds to 
one failure in 180 teeth tested, and the NPV is 
negative 2.54. Thus, the 10% failure load for 
running gears is the point on the Conservative 
Fit—Load versus Failure Rate line at NPV 
equal to negative 2.54.

Many industries consider the design condi-
tion to be 1% failure. With 18-tooth specimens, 
this is one failure in 1,800 teeth tested, and the 
corresponding NPV value is negative 3.26. The 
load corresponding to 1% failure is found by 
drawing a line through the loads selected for 
10% and 50% failure with running gears and 
picking off the value at x equal negative 3.26. 
The aerospace industry considers the design 
condition to be minus three-sigma (i.e., one 
failure in 740 odd parts tested). With 18-tooth 
gears this is one failure in 13,333 teeth tested, 
and the corresponding NPV value is negative 
3.79. The load corresponding to minus three 
sigma is found by drawing a line through the 
loads selected for 10% and 50% failure, with 
PC gears and picking off the value at x equal 
to negative 3.79.

Analysis Method—Step by Step
The first task in the analysis is to sort the 

data by load and find the failure rate at each 
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Example 1; STF; 5,000,000 Cycles; Ambient; R = 0.1
Step Two - Find Minus Three Sigma Load
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Example 1; STF; 5,000,000 Cycles; Ambient; R = 0.1
Step One - Find Initial 50% Failure Load
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Figure 5—Example 1: STF; 5,000,000 cycles; ambient; R = 0.1. Step 1—Find initial 50% failure 

load.  These failure rates are plotted in terms 
of normal probability variate versus load as 
hollow diamonds on the chart previously 
described. The mean failure point (average of 
all the tests at loads that resulted in a mixture 
of failures and no failures) is plotted as a solid 
diamond. The confidence ranges are calculated 
for each load and plotted as lines for each load. 
A line is fit through the mean failure point to 
suit the data and stay within the limits for each 
load. This line is used to determine the load 
corresponding to 50% failures. The slope of 
the lines on the second probability diagram is 
the reciprocal of 10% of this load.

A second probability diagram is drawn 
with the data points along with the mean fail-
ure point, and confidence ranges for each data 
point. The Mean Fit—Load versus Failure Rate 
is drawn through the mean Failure Point at the 
slope determined above. The Conservative 
Fit—Load versus Failure Rate line is drawn 
at the same slope to encompass all/most of the 
confidence ranges as previously described. The 
load corresponding to 50% failures is picked 
from the mean fit line, the load corresponding 
to 10% failures is picked from the conserva-
tive fit line, and the load corresponding to the 
desired design condition is selected by fitting a 
line through these two points and extrapolating 
to the required normal probability variate, all 
as described previously.

The loads are converted to stresses. The R 
equal 0.1 “running gear” stresses correspond-
ing to 50% failures, 10% failures and design 
condition are adjusted to account for the stress 
range anticipated with running gears using 
allowable stress range diagrams as previously 
described. A stress-cycles diagram is con-
structed. A STF 50% failures (G50) curve is 
fit through the stress corresponding to 50% 
failure at the run-out limit determined in the 
statistical analysis and the rest of the data 
points using the best method available. For the 
limited data in the following examples, this is 
by eye. If more data were available, Weibull 
analyses could be conducted at several loads 
and used to define the finite life portion of the 
curve more precisely. This curve is moved 
linearly downward to the adjusted stresses at 
the run-out limit to represent 50% failures, 
10% failures, and design condition for running 
gears. The full procedure is illustrated with the 
following two examples.

Example 1—Case Carburized Gears. The 
STF specimen gears used in the program the 

Table 1 — Example 1 (Carburized) Data

Maximum Load (Pounds) Number of Tests Number of Failures Failure Rate
7,500 6 6 1.000
7,350 1 1 1.000
7,200 4 2 0.500
7,050 6 3 0.500
6,900 4 2 0.500
6,750 3 1 0.333
6,600 2 0 0.000
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Example 1 STF Test Results Compared to Running Gears
STF Tests Conducted at Ambient, Running Gear Tests at 160 F
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Figure 8—Example 1 STF test results compared to running gears; STF tests conducted at 
ambient, running gear tests at 160° F.
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Figure 7—Allowable stress range diagram; Example 1: Tested at ambient; translated run-
ning gear 50% failure (G50) at 5 million cycles.

first set of sample data was taken from are 
Gear Research’s standard pattern; hence the 
factor for converting load to stress is 19.3 psi 
bending stress per pound of load.  The test 
results are summarized in Table 1.

Figure 5 shows the first statistical diagram 
constructed from this data. This diagram is 
used to select the load that corresponds to 50% 
failures; in this case the value is 7,050 pounds, 
which appears intuitively obvious from an 
examination of Table 1. The reciprocal of 
the slope of the fit lines shown in Figure 6 is 
taken as 10% of this value. Figure 6 shows the 
statistical step from STF to running gear data. 
In this case, the selected slope of the fit lines 
appears to fit the data very well. The translated 
R = 0.1 running gear G50 maximum load is 
5,700 pounds, which corresponds to 110 ksi 
maximum bending stress. The allowable stress 
range diagram shown in Figure 7 shows the 
adjustment of this stress to R = negative 0.2 
stress, which is 94.9 ksi.

Figure 8 shows a stress cycles diagram 
with STF and running gear data. An approxi-
mate STF G50 curve was fit by eye judg-
ment to the data, starting with 136 ksi (cor-
responding to 7,050 pounds load) at 5 mil-
lion cycles. The other curves were located by 
calculating the stress at five million cycles, 
as described above, and moving the entire 
curve linearly down to that point. The exact 
shape of the translated running gear curves 
below five million cycles cannot be accurately 
determined with the limited data available, 
so this method was adopted as the simplest 
expedient.  Bending results from running gear 
tests are shown as hollow squares. These tests 
were conducted at extremely high overload to 
ensure that bending failures occurred rather 
than surface durability failures. STF tests were 
not conducted at high enough loads to directly 
compare with these results.

Given the paucity of data, it appears at first 
blush that the translated stresses are too low. 
In a later test program, three surface durability 
tests were conducted with the same grade of 
carburized steel gears at a load corresponding 
to the translated running gear G50 shown in 
Figure 8; one of these tests resulted in a bend-
ing failure and is plotted in Figure 8. Also, 
the result of one of the original running gear 
bending tests was an unexplained low-side-
outlier; this result appears to lie in the region 
that would be extrapolated from the trans-
lated bending strength curves. This additional 

data tends to confirm the large step predicted 
between STF results and running gear result. 
Figure 8 also shows curves adapted from 
ANSI/AGMA 2001-C95 allowing for 10% and 
50% maximum failures rates (KR = 0.85 and 
0.70 respectively; all other rating factors set to 
unity), which fit the running gear data and the 
translated curves reasonably well.

Example 2 — Induction Hardened Gears. 
The single-tooth fatigue specimen gears used 
in the program for the second set of sample 
data was taken from the same general design 
as those used to develop the first set. The hob 
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Table 2 — Example 2 (Induction Hardened) Data
Maximum Load

(Pounds)
Number
of Tests

Number of
Failures

Failure
Rate

9,500 6 6 1.000
9,000 6 4 0.667
8,500 6 3 0.500
8,000 3 1 0.333
7,500 1 0 0.000

Example 2; STF; 5,000,000 Cycles; Ambient; R = 0.1
Step One - Find Initial 50% Failure Load
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Figure 9—Example 2: STF; 5,000,000 cycles; R = 0.1; Step 1—Find initial 50% failure load.

used to cut these specimens was a short-lead 
hob that had been sharpened too many times, 
resulting in a different form in the root fillet. 
The bending stress was calculated in the man-
ner previously described, with the result that 
bending stress was 20.3 psi per-pound-load 
(contrasted to 19.3 psi per-pound- load for the 
standard root fillet). The running gears used in 
this program again had 18 teeth.  STF test data 
is summarized in Table 2.

Figures 9 and 10 show the application of 
Steps One and Two of the analysis method to 
this data. The slope of the fit lines in Figure 
10 appears to be non-conservative (predicting 
high values of translated running gear bending 
strength) when compared to the data. Figure 11 
is a stress-cycles diagram showing STF results, 
running gear test results and curves for STF 
G50, running gear G50, running gear G10 and 
running gear minus three-sigma. As was the 
case with the first example set of data, it would 
have been desirable to conduct more tests and 
better define the stress-cycles relationship. The 

STF G50 line is laid in by eye and is a compro-
mise between the four failures below 200,000 
cycles and two run-outs at the second highest 
load, and the six failures below 160,000 cycles 
at the highest load. The running gear bending 
results fall very close to the translated running 
gear’s G50 curve. (This particular data set was 
selected because it comprises the longest cycle 
running gear bending failure data obtained 
with the Gear Research Institute’s standard 
specimen gears, giving a better comparison 
to the portion of the stress-cycles relationship 
best defined by the STF test.)

All of the running gear bending data points 
fall above the translated running gear G10 
curve, except one outlier run at a lower load in 
what was intended as a surface durability test. 
The specimen gears used in these tests were 
induction hardened. The origin of this outlying 
failure was at a large inclusion at the case core 
juncture some 0.050 inches below the root sur-
face, further down the root fillet than the point 
maximum stress was expected. The material 
was commercial quality (air melt) cleanliness; 
however, this inclusion was larger than to 
be expected in commercial quality material. 
Thus, this outlying point represents an extreme 
condition, and it still falls above the translated 
running gear minus three-sigma curve.

Conclusion and Discussion
The method presented here, while being 

empirical, makes a reasonable approximation 
of running gear bending strength based on 
limited STF bending results. Prior work done 
in this area by the Gear Research Institute was 
based on running gear data obtained at very 
high overloads (as in Example 1), and predict-
ed a smaller difference between STF and run-
ning gears. Results such as the bending failure 
in a surface durability test shown in Figure 8 
were considered to be unexplained, low-side-
outliers. Using the method presented here, this 
result fits the predicted trend.

Factors such as residual stress and dynamic 
loading have not been directly considered here.  
The STF and running gear specimens used 
to obtain the data shown in Example 1 were 
processed in the same manner, which should 
result in very similar residual stresses. The 
same was the case for the specimens used in 
Example 2. Running gear tests were conducted 
with low-mass gears at low speed in a machine 
with long shafts (providing torsional springi-
ness, see Figure 12) to recirculate the applied 
load, resulting in low dynamic stresses. Strain 
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Example 2; STF; 5,000,000 Cycles; Ambient; R = 0.1
Step Two - Find Minus Three Sigma Load
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Figure 10—Example 2: STF; 500,000 cycles; ambient; R = 0.1; Step 2—Find minus 3 sigma 
load.
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Example 2 STF Test Results Compared to Running Gears
STF Tests Conducted at Ambient, Running Gear Tests at 160 F
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Figure 11—Example 2 STF test results compared to running gears; STF tests conducted at 
ambient, running gear tests at 160 °F.

gage measurements with this set-up at standard 
speed and double standard speed confirm that 
dynamic loading was minimal.

This area has been examined in the past by 
other investigators. Seabrook and Dudley (Ref. 
7) found that the results of STF tests predicted 
30% more strength than was the case with run-
ning gear tests using the same materials. This 
was attributed to a dynamic effect, even though 
the running gear tests were conducted on a rig 
designed to minimize dynamic loading. It is 
interesting to note that this is almost exactly 
the same difference found here (with gears 
reflecting four-decades advances in materials 
and manufacturing processes) that seems to be 
related to the statistical differences between 
STF and running gears.
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Figure 12—Power re-circulating gear test rig.  
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