
Introduction and Motivation
Increasing demands on product performance have led to high 
demand for optimization in component design. Optimization 
methods can be used to solve the conflicts between different 
design objectives. The importance of numerical optimization 
methods is also increasing in the gear design and is part of dif-
ferent phases of the development process. The gear design is 
divided into four essential steps, which are necessary for the def-
inition of the macro- and microgeometry of the gears (Ref. 1).

The process shown in Figure  1 starts with the determina-
tion of the gearbox topology. The topology is largely derived 
from the gear ratio requirement between driving and driven 
components. Methods for optimizing the transmission topol-
ogy are based on simplified standard calculations and evaluat-
ing various transmission topologies. The possible topologies 
are evaluated concerning their volume, the expected efficiency, 
and the achievable load-carrying capacity. At this early stage 
of development, these parameters can only be determined 
approximately since the macrogeometry of the gears and the 
shaft bearing system have not been defined yet. With the gear 
topology selected, the gears can be designed, see Figure 1. The 
boundary conditions for designing the gear stages, such as the 
center distance, the gear ratio, and the face width, have been 
defined in the previous step. A design of gears with a focus on 
the load-carrying capacity is possible according to ISO 6336 
(Ref. 2). If other design objectives are in focus, such as efficiency 

or excitation behavior, higher-level methods are recommended. 
With a variant calculation, the selection of a gear geometry cor-
responding to the requirements is possible. With an increasing 
number of variation variables, numerical optimization methods 
can be more target-oriented compared to variant calculations. 
For the final evaluation of the operational behavior, for example, 
FE-based methods can be used (Refs. 3 and 4).

In the third step of the gearbox design, further components 
such as shafts, bearings and the housing are designed, see 
Figure  1. The transmitted forces and torques are completely 
defined at this development step. Especially for gearboxes with 
a high required power density, an iterative procedure within the 
first three design steps may be necessary (Ref. 1). The last and 
fourth step of the gear design is the optimization of the tooth 
contact with a specifically designed microgeometry. The level 
of detail of the design is the highest in this step, so numerical 
methods are often used. When designing the microgeometry, 
manufacturing deviations and load-dependent misalignments 
can be considered. FE-based variant calculations are suitable for 
determining an optimal microgeometry. Further optimization 
potential in this design step is provided, for example, by topo-
logical flank modifications (Refs. 5 and 6).

Optimization methods can be usefully applied in every step 
of the gear design process. Especially for gearboxes with more 
complex kinematic relationships and additional geometric 
restrictions that vary depending on the design parameters, as it 
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Figure 1 �� Gearbox Design Process
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is with the case of planetary gear stages, numerical optimization 
methods can make further potential available.

Design of Stepped Planetary Gear Stages
One of the challenges in the design of automotive transmissions 
is the combination of high power density, high efficiency, and 
low noise excitation. With the electrification of the powertrain, 
the requirements in terms of noise excitation and efficiency 
increase further. On the one hand, the masking noise of the 
combustion engine is eliminated, and on the other hand, energy 
efficiency is mandatory for electric vehicles. To meet these 
requirements, complex transmission topologies with planetary 
gear stages are increasingly being used. Advantages of planetary 
gear stages are, in particular, the short axial length in conjunc-
tion with the coaxial alignment of the input and output shafts 
and the comparatively high gear ratio and power density. To 
increase the power density and the maximum achievable gear 
ratio further, stepped planetary gear stages (also called com-
pound epicyclic) can be used. In these, a stepped planet consist-
ing of two rigidly connected gears is used instead of one single 
planet. The input shaft of the stepped planetary gear stage con-
sidered in the following is the sun. The ring gear is fixed to the 
housing and the output shaft is the planet carrier.

With this gear configuration, ratios between sun and car-
rier of iSC ≥ 20 are possible, considering geometric boundary 
conditions. The stationary gear ratio i0 is calculated according 
to Equation 1, which describes the gear ratio with a planet car-
rier fixed to the housing, input on the sun and output on the 
ring gear. The stationary gear ratio i0 is used to derive the gear 
ratio iSC of the relevant configuration with the ring gear fixed to 
the housing, input on the sun, and output on the planet carrier, 
according to Equation 2 (Ref. 7).

(1)i0 = − zP1 ∙ zR
zS ∙ zP2

(2)iSC = 1−i0 = 1+ zP1 ∙ zR
zS ∙ zP2

where
	 i0	is the stationary gear ratio [-]
	 iSC	is the gear ratio between the sun gear and carrier [-]
	 zS	is the number of teeth of the sun gear [-]
	 zP1	is the number of teeth of the first planet [-]
	 zP2	is the number of teeth of the second planet [-]
	 zR	is the number of teeth of the ring gear [-]

The description of the macrogeometry of cylindrical gear 
stages requires the specification of certain parameters, which 
define the geometry without contradiction. Based on these 
parameters, further macrogeometry parameters can be cal-
culated. Some of the most important values for the geometry 
calculation of cylindrical gear stages are shown in Figure 2 on 
the left. For example, the sum of the numbers of teeth Σz can 
be calculated from the center distance a, the helix angle β and 
the normal module mn, assuming backlash-free gears with-
out profile shift (Ref. 2). The sum of the numbers of teeth Σz is 
then divided between the two gears, taking the gear ratio i into 
account. The tip diameter of the first gear is calculated from the 
tooth root shape of the counter gear and the required tip clear-
ance. In the case of sharp teeth, the tip circle diameter must be 
reduced so that a minimum tooth thickness is achieved at the 
tip circle diameter. If the geometry parameters are varied within 
reasonable limits, the result is a variation space with just geo-
metrically valid gears. The limits of the variation space are not 
identical for every application. For example, the module mn 
should only be increased until the undercut limit is reached 
on the pinion. Between the minima and maxima, the variation 

Figure 2 �� Variation Parameters and Constraints in the Design of Stepped Planetary Gear Stages
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variables lead to valid geometries.
In the design of planetary gear stages, it is necessary to con-

sider characteristics concerning the kinematic couplings. The 
kinematics of a planetary gear stage is completely determined by 
one planetary gear. With each additional planetary gear, a kine-
matic overdetermination takes place, which results in the fact 
that only special tooth number combinations enable uniform 
distribution of the planetary gears in the carrier. For simple 
planetary gear stages, the number of teeth of the sun and the 
ring gear must fulfill Equation 3. This assembly condition is 
transferable to stepped planetary gear stages. For a uniform dis-
tribution of the planet gears in the carrier, Equation 4 must be 
fulfilled for stepped planetary gear stages (Ref. 7).

If a variant calculation is carried out for planetary gear stages, 
an additional variation variable is required for the tool profile 
of the ring gear, see Figure 2 center. For simple planetary gear 
stages, due to the double gear mesh on the planetary gear, most 
of the macrogeometry parameters in both meshes are identical 
or can be calculated directly. Due to the assembly condition, this 
calculation also results in nonvalid tooth number combinations, 
so an iterative calculation is necessary and only a subset of the 
variation space can be considered further. An additional limi-
tation of the variation space can be made, for example, by the 
exclusive selection of variants with numbers of teeth without a 
common divisor.

(3)|zS|+|zR| = nP ∙ j
(4)|zS ∙ zP2|+|zP1 ∙ zR| = nP ∙ j

where
	 zS	is the number of teeth of the sun gear [-]
	 zR	is the number of teeth of the ring gear [-]
	 zP1	is the number of teeth of the first planet [-]
	 zP2	is the number of teeth of the second planet [-]
	 nP	is the number of (stepped) planets [-]
	 j	is an integer [-]

In the case of stepped planetary gear stages, two geometrically 
independent gear meshes can be designed and optimized, see 
Figure  2 on the right. The number of variation variables and 
thus the number of theoretically available geometry variants is, 

accordingly, significantly higher. At the same time, the assem-
bly condition according to Equation 4 must be observed, which 
limits the valid variation space. The numbers of teeth result-
ing from the gear ratios of the sub-stages must also satisfy the 
required total gear ratio iSC between sun and carrier, according 
to Equation 2. Overall, this results in a comparatively large vari-
ation space that contains only a few valid geometries. Due to the 
described restrictions, which can be extended by the exclusive 
selection of variants with numbers of teeth without a common 
divisor, an iterative geometry calculation for stepped planetary 
gears is necessary.

If a comprehensive variation of the parameters of the mac-
rogeometry as well as of the tool profile is performed for all 
gears, many possible combinations arise. Algorithm-based 
optimization methods are suitable for selecting a variant within 
such a large variation space. A full factorial calculation of all 
geometry variants with high-level calculation methods is not 
possible in a reasonable calculation time. Nevertheless, with the 
independent design of the two sub-stages, an increase in power 
density and efficiency through optimized geometry parameters 
is conceivable. In the literature, no numerical optimization of 
the gear geometry of stepped planetary gears is known that 
combines a tool-based geometry calculation with an FE-based 
tooth contact analysis.

Objective and Approach
Stepped planetary gear stages can be used to increase the power 
density in electrically driven vehicles. However, assembly con-
straints must be considered during design and optimization, 
which, in combination with a large number of variation vari-
ables, require algorithm-based optimization methods. In the 
design of gearboxes, various design objectives are relevant, 
which cause conflicts. Therefore, the objective of this paper is 
the development of a method for algorithm-based design and 
optimization of the macrogeometry of stepped planetary gear 
stages, considering weighted design objectives, see Figure 3.

To achieve the overall objective, the boundary conditions in 
the design of stepped planetary gear stages are first analyzed 

Figure 3 �� Objective and Approach
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in more detail and the geometric variation space is defined. 
The angular positions of the stepped planets for assembly are 
derived considering the phase position of the gear meshes. 
Subsequently, an optimization algorithm is selected that allows 
an application-oriented evaluation of the gear geometry. The 
design objectives efficiency, load-carrying capacity, NVH 
(Noise, Vibration, Harshness), and volume are weighted for dif-
ferent operating points. The operational behavior of the gear 
geometries is evaluated using the FE-based tooth contact analy-
sis FE-STIRNRADKETTE (Ref. 3). The developed method is then 
applied to a stepped planetary gear stage of an electrically driven 
compact car. Different weighting variants of the design objec-
tives are investigated, and the results are compared.

Boundary Conditions for the Design of Stepped 
Planetary Gear Stages
The assembly constraint of stepped planetary gear stages results 
from the kinematic coupling of the gear meshes and consequent 
geometrical restrictions. In this chapter, a method is first pre-
sented that enables the identification of suitable tooth number 
combinations. Subsequently, the phase position of the gear 
meshes and the necessary assembly angles of the stepped planets 
are derived. It is assumed that the angle between planet 1 and 
planet 2 of the same shaft is identical for each of the mounted 
stepped planets and that they are therefore interchangeable.

Identification of Suitable Numbers of Teeth Combinations
In contrast to simple cylindrical gear stages, the calculation of 
the numbers of teeth of stepped planetary gear stages is con-
strained by the mountability. The equation for verifying the 
mountability was explained in “Design of Stepped Planetary 
Gear Stages,” see Equation 4. Due to the high number of non-
mountable geometry variants, a variation of the numbers of 
teeth with an optimization algorithm is not effective. The num-
ber of iterations required to achieve convergence in the opti-
mization can be reduced by avoiding the calculation of non-
mountable geometry variants. To exclude these variants, a 
method for identifying suitable numbers of teeth is presented in 
the following section. This method uses eight input parameters 

that lead to one optimal numbers of teeth combination. The 
eight input parameters can be varied by the optimization algo-
rithm so that only mountable geometry variants are compared 
during optimization.

The entire procedure for determining the numbers of teeth 
is shown in Figure 4. The numbers of teeth of the stepped plan-
etary gear stage are determined depending on the eight parame-
ters shown in Figure 4 at the bottom. First, the possible numbers 
of teeth of the four gears (sun gear, planet 1, planet 2, and ring 
gear) are varied full factorially in defined ranges. With these, the 
total gear ratio iSC is calculated in step 2 according to Equation 2. 
Only variants with a maximum deviation of the total gear ratio 
of Δi = 0.4 are selected for further consideration. The number of 
remaining variants has decreased significantly with this step, see 
Figure 4.

In the third step, the gear ratio of the first stage (sun-planet 1) 
of all variants is compared with the target gear ratio of the first 
stage and used to reduce the number of remaining variants. The 
permissible deviation of the gear ratio of the first stage is evalu-
ated less restrictively than that of the overall gear ratio since the 
gear ratio of the first stage is taken up again in step 6. An addi-
tional constraint in the identification of the numbers of teeth 
is the limitation of the greatest common divisor of adjacent 
gears to gcd(z1;z2) = 1, see step 4 in Figure  4. For the remain-
ing variants, the mountability is checked in step 5 according to 
Equation 4. In addition, a penetration check of the tip diameters 
of the planet gears is performed, considering the number of 
stepped planets nP. The resulting variants contain all tooth num-
ber combinations that fulfill the gear ratio requirements and are 
mountable. In the sixth step, the stepped planetary gear stage is 
scaled with the center distance a to calculate the normal module 
mn of the stages. In the calculation, it is first assumed that the 
gears are designed without profile shifts and that the center dis-
tance a corresponds to the zero center distance ad = a. According 
to Equation 5, the resulting normal module of each variant mn,var 
is calculated for both stages. Finally, the variant with a mini-
mum combined deviation according to Equation 6 is selected, 
see Figure 4, step 6. The deviations from the target values of the 
normal module of stage 1 mn,1, the normal module mn,2 of stage 

Figure 4 �� Iterative Identification of Suitable Numbers of Teeth Combinations
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2 and the gear ratio of stage 1 i1 are weighted equally.
(5)

mn,var = 2 ∙ ad ∙cos β
Σz

(6)
min (√ mn.1 –2 ∙ ad ∙cos β1)2

+ (mn.1– 2 ∙ ad ∙cos β2 )2
+ (i1– zP1 )2 )zS ∙ zP1 zP1 ∙ zH zS

where
	 z	is the number of teeth [-]
	 ad	is the zero center distance [mm]
	 β	is the helix angle [°]
	 mn	is the normal module [mm]

Phase and Assembly Position
Since the mountability of the stepped planetary gear stage is 
ensured with a suitable numbers of teeth combination, this sec-
tion considers the necessary positioning of the stepped planets 
for assembly. As described at the beginning of this chapter, the 
angle between the two planet gears is assumed to be identical 
for all stepped planets. In addition, the stepped planets are to 
be evenly distributed around the circumference of the planet 
carrier.

A sketch of the gear teeth in assembly position is shown in 
Figure 5, left. As shown in detail view A, the first tooth gap of 
the ring gear is in the upper position and is marked with the 
number 1. The numbering of the tooth gaps on the central 
gears and the teeth on the planets is in the mathematical posi-
tive direction around the z-axis — counterclockwise. The first 
tooth gap of the sun gear is aligned in the direction of the y-axis. 
Planet 1 of stepped planet 1 in the sun contact is accordingly 
aligned with tooth 1 downward in the negative y-direction, see 
detail view B in Figure 5, right. Planet 2 of stepped planet 1 is 
oriented upward with tooth 1 in the y-axis direction. With this 
definition, the positions of the central gears and the stepped 
planet 1 are fixed. To visualize the rotation angles of the stepped 
planets, tooth 1 of planet 1 and tooth 1 of planet 2 of each 
stepped planet are marked with points and are connected with 
a line.

The calculation of the assembly angle of the second and third 
stepped planets is derived based on the phase position of the 
gear meshes of the planet gears and the central gears. First, the 
phase position of the meshes with the central gears is calculated. 

The calculation for the sun-planet 1 meshes ΔpSi is done accord-
ing to Equation 7 and correspondingly for the planet 2-ring gear 
meshes ΔpHi according to Equation 8. The angle φPin,i describes 
the angle between the vertical (y-axis) and the connecting line 
between the centers of the sun and the stepped planet i in the 
mathematical positive direction. The phase shift in the sun 
mesh is then converted into a rotation angle of planet 1, see 
Equation 9. This rotation angle φPi,ΔpS ensures that planet 1 is 
correctly aligned in the sun mesh right, see Figure 5. In the fur-
ther procedure, the stepped planet i consisting of planet 1 and 
planet 2 is iteratively rotated by one pitch in the sun-planet 1 
mesh, until the phase shift in the planet 2-ring gear mesh cor-
responds to the previously calculated value ΔpHi. The calcula-
tion of the phase shift in the planet 2-ring gear mesh from the 
rotation of the stepped planet is described in Equation 10. The 
integer j corresponds to the number of pitches necessary to 
obtain the required phase shift in the planet 2-ring gear mesh. 
Finally, the rotation angle for the assembly of the stepped planet 
i is calculated from the sum of the two angles φPi,ΔpS and φPi,ΔpH, 
see Equation 11.

(7)
ΔpSi = mod (φPin,i ∙ zS ,1)2 ∙ π

(8)
ΔpRi = mod (φPin,i ∙ |zR| ,1)2 ∙ π

(9)
φPi,ΔpS = ΔpSi ∙ 2∙π

zP1

(10)
ΔpRi = 1−mod ( φPi,ΔpS + j ∙ 2 ∙ π

zP1 ,1)2 ∙ π
zP2

(11)φPi = φPi,ΔpS + φPi,ΔpR = φPi,ΔpS + j ∙ 2∙π
zP1

where
	 ΔpSi	 is the phase position of the sun-planet 1 meshes [pet]
	 ΔpRi	 is the phase position of the planet 2-ring gear meshes 

[pet]
	 φPin,i	 is the angle of the planet pin position in the carrier [rad]
	 φPi,ΔpS	 is the rotation angle of the stepped planed due to the 

phase position in the sun gear mesh [rad]
	 φPi,ΔpR	 is the rotation angle of the stepped planed due to the 

phase position in the ring gear mesh [rad]
	zS/P1/P2/R	is the number of teeth of the sun / planet 1 / planet 2 / 

Figure 5 �� Sketch of the Stepped Planetary Gear Stage in Assembly Position
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ring gear [-]
	 j	 is an integer [-]
	 φPi	 is the rotation angle for the assembly of the stepped 

planet I [rad]

FE-based Macrogeometry Optimization
Numerical optimization methods are used in various engineer-
ing areas. In the gearbox design, for example, topology optimi-
zation of the housing can be used to reduce the housing mass 
and increase the stiffness. Optimization of the macro- and 
microgeometry of the gears is increasingly in focus.

In this paper, a particle-swarm algorithm is used, which is 
described in more detail in the following section. Then, the 
constraints, optimization variables, optimization objectives, and 
their weighting are presented. In contrast to existing optimiza-
tion methods, an FE-based tooth contact analysis is used to 
evaluate the operational behavior. Furthermore, a comprehen-
sive variation of different geometry parameters is performed.

Set-up of the Optimization Method
When optimizing the macrogeometry of stepped planetary gear 
stages, various boundary conditions must be considered. First, a 
total gear ratio itotal is assumed for the specific application. The 
number of stepped planets and the microgeometry of the gears 
are specified as further constraints. For the microgeometry, only 
a lead crowning and a profile crowning are used. The operat-
ing points and evaluation criteria as the last constraints are 
explained in the next section.

The optimization procedure, the boundary conditions and the 
optimization parameters are shown in Figure 6. The developed 
optimization method is based on a particle swarm algorithm 
with 60 individuals per generation. As can be seen on the right 
side of Figure 6, the method consists of two processes. First, the 
particle swarm algorithm creates the input parameters of the 
next generation. These are computed and evaluated one after 
the other before the results are provided to the algorithm again 
and it derives a set of optimized input parameters for the next 
generation. The total number of generations calculated was cho-
sen as the termination criterion.

When calculating the geometry of the individual variants, the 

procedure for identifying suitable numbers of teeth is applied 
as described in the sections before. The geometry parameters 
that are varied and optimized are listed in Figure  6, bottom 
left. Since the calculation of the numbers of teeth assumes that 
the gear teeth are designed without profile shift, the parameter 
module deviation Δmn is introduced for each gear mesh. With 
this, the optimization algorithm allows a specific change to the 
normal module resulting from the calculation of the numbers of 
teeth. With this change, a sum profile shift becomes necessary at 
the same time, which is divided between the two gears belong-
ing to one gear mesh with the optimization parameter profile 
shift distribution x1/x2. The tool profile for the geometry calcula-
tion of the gear teeth is fully rounded at the tip for all calcula-
tions. The addendum factor of the tool profile haP0* is optimized 
and thus the tooth root shape is also integrated into the optimi-
zation. In total, 18 optimization parameters result, which define 
the variation space.

The calculation of the characteristic values of each vari-
ant is performed with the FE-based tooth contact analysis 
FE-STIRNRADKETTE. The single gear meshes are calculated 
independently of each other under quasistatic conditions. Since 
the shaft-bearing system has not been defined at that stage 
of design and therefore no load-dependent misalignments 
can be calculated yet, an ideal alignment of the gear teeth is 
assumed, see Figure  1. The characteristic values for evaluation 
and weighting are presented in the following section.

Optimization Objectives and Weighting
In the gear design, the five design objectives load-carrying 
capacity, excitation behavior, efficiency, cost, and volume can 
be identified (Ref. 1). With the method presented in this paper, 
a comprehensive evaluation of all objectives, except cost, is per-
formed. The load-carrying capacity is considered differentiated 
in terms of maximum tooth flank pressure and maximum tooth 
root stress. The excitation behavior is evaluated with the peak-
to-peak transmission error and the efficiency with the load-
related power loss in the gear mesh. The volume is evaluated 
based on an enveloping cylinder.

The evaluation of the objective values is done with a linear 

Figure 6 �� Procedure of the Optimization Method
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grade scaling (1–best and 6–worst) for comparability among 
them. The calculation of the grade gr is shown in Equation 12 
for a quantity to be minimized for different cases. If the calcu-
lated value v exceeds the limit value of the grade 6 v6, an addi-
tional deterioration of the grade is applied. This procedure pre-
vents the compensation of different parameters in impermissible 
ranges.

(12)

gr = { 1 v ≤ v1

1 + 5
v6−v1  

∙ (v−v1) v1 < v ≤ v6

6 +((1 + 5
v6−v1  ∙ (v−v1))–6)∙ 5 v6 < v

where
	gr	is the grade
	 v	is the value to be graded
	 v1	is the value related to grade 1 (best)
	 v6	is the value related to grade 6 (worst)

Various operating points consisting of speed and torque are 
relevant in the gear design. The weighting of the objective values 
can be different for each operating point. To evaluate a geom-
etry variant, FE-based tooth contact analysis is used to perform 
calculations at different operating points. Subsequently, the 
parameters are individually evaluated with grades. The overall 
evaluation of the geometry variant is calculated according to 
Equation 13. The procedure for determining the weighting fac-
tors of the objective values wk,OP required for the overall evalua-
tion is shown in Figure 7.

(13)f = Σnop
op = 1  Σnkk = 1

wk,OP ∙ grk,OP

where
	 f 	is the function value
	 k 	is the identifier of the objective value
	 nk 	is the number of objective values
	 OP 	is the identifier of the operating point
	 nOP 	is the number of operating points
	 wk,OP 	is the weighting of the objective value k at the operating 

point OP
	grk,OP 	is the grade of the objective value k at the operating point 

OP

Five relevant operating points were identified for the design, 
see Figure  7, bottom right. First, the weighting of the design 

objectives is determined for each operating point, see step 1. 
The volume of the gear stage is equally relevant for each oper-
ating point. In this example, the excitation in the form of the 
peak-to-peak transmission error is of higher interest in lower 
torque ranges. In contrast, the characteristic values for the load-
carrying capacity are weighted higher at higher torques. In addi-
tion to the weighting of the design objectives for each operating 
point, the weighting of the operating points among each other 
is also possible. In the example shown, the operating points 
with higher torque were weighted higher overall, see Figure  7, 
bottom left. The weighting factors are then normalized so that 
different weighting variants can be compared, see Figure 7, top 
right.

Application of the Optimization Method
In this chapter, the developed method for optimizing a stepped 
planetary gear stage is applied to an electrically driven compact 
car. First, the use case and the resulting boundary conditions 
for the optimization are presented. Then, the different weight-
ing variants for the optimization are described and compared. 
Finally, the optimization results are analyzed and compared 
with the initial gear design.

Boundary Conditions of the Optimization
The application of the developed method is carried out using 
the example of an electrically driven compact car. A conven-
tionally driven VW Golf 7 GTI with a maximum output of 
Pmax = 160 kW was chosen as a reference for comparison. To 
identify the required boundary conditions of the gearbox, the 
wheel torque of the conventionally driven vehicle with a 6-speed 
transmission was plotted against the vehicle speed in Figure 8.

The torque-speed characteristics with six gears of the conven-
tional drivetrain can be approximated with a torque-speed char-
acteristic of an electrical machine. The total power required by 
the drive unit is divided between two electrical machines, which 
can be used, for example, as single-wheel drives. The maximum 
driving speed of the vehicle is limited to vmax = 180 km/h. With 
the maximum speed of the electrical machines nEM,max = 25,000 
rpm, the required gear ratio iges = 16.60 is calculated, see step 1 in 

Figure 7 �� Determination of Weighting Factors for Different Operating Points
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Figure 8. A stepped planetary gear stage is therefore suitable for 
achieving the required total gear ratio. The maximum achiev-
able torque of the electrical machines is then derived from the 
rated speed of the electrical machine, see step 2 in Figure 8.

Five operating points are identified for the design of the gear 
stage. The first operating point, OP1, has a low torque and is 
used during optimization mainly to limit the excitation in the 
low torque range. The other four operating points are on the 
maximum power hyperbola and cover a wide torque and speed 
range.

Description of the Optimization Variants
Ten different weighting variants are selected to optimize the 
stepped planetary gear stage, see Figure 9. The weighting of the 
efficiency and the volume is set differently for the variants. The 
weighting of the remaining optimization objectives — i.e., peak-
to-peak transmission error, tooth flank pressure, and tooth root 
stress — changes accordingly. Starting from variant V11 at the 
top left in Figure  9, the weighting of the efficiency increases 
with the variants to the right. The weighting of the volume is 

increased downwards to variant V14.
A general overview of the variants can be seen in Figure  9, 

bottom right. The four highlighted weighting variants will be 
considered in more detail in the next section, as they represent 
the extrema of the different weightings. In total, three inter-
related variant series can be identified. In the variant series 
V11-V21-V31 and V12-V22-V32-V42-V52, the share of effi-
ciency weighting is progressively increased. The share of volume 
weighting is progressively increased for the variant series V11-
V12-V13-V14. The weighting of the operating points among 
each other leads to a design focus on the higher torque operat-
ing points OP3 to OP5.

Analysis of the Optimization Results
The optimization process of the stepped planetary gear stage 
was stopped after 100 generations for each weighting variant. 
A total of 6,000 different geometries were calculated and com-
pared for each weighting variant at five operating points each. 
For further analysis, the variants were recalculated with a finer 
resolution of the FE model of the gears. The resulting objective 

Figure 8 �� Torque Speed Diagram of the Electrical Machine (EM) and Derivation of Relevant Operating Points (OP)

Figure 9 �� Weighting Variants
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values of the optimizations are shown in Figure  10. The theo-
retical volume of the gear is calculated from the maximum 
outer diameter and the sum of the face width of the two gear 
meshes. In Figure 10, top left, the volume of the variants is plot-
ted against the weighting share of the volume. The results show 
an approximately linear relationship between the weighting and 
the volume. Variant V14, with the highest weighting of the vol-
ume, achieved a 34.3% lower volume than variant V31. The cor-
relations of the different weighting series are recognizable and 
verify the optimization method.

The results of the second optimization objective, efficiency, 
are shown in the top right of Figure 10. The diagram shows the 
mean value of the efficiencies of the two gear meshes for the 
highest weighted operating point OP4, above the weighting of 
the efficiency. The increase in the mean efficiency with increas-
ing weighting is visible. The variants converge to a maximum as 
the weighting increases.

Due to the variation of the two optimization objectives vol-
ume and efficiency, the weighting of the other optimization 
objectives also changes. The results of the other objective values 
are shown in the same form in Figure  10 below. In particular, 

the tooth flank pressure and the tooth root stress show a very 
good correlation between weighting and value.

Four weighting variants were selected for further analysis. 
The designation and a comparison of the volumes of the dif-
ferent variants can be found in Table  1. With these four vari-
ants, the extrema of the weighting series are covered and can be 
compared with the initial design start. The difference between 
the variants V31 and V52 is the weighting of the efficiency com-
pared to the weighting of the other optimization objectives. The 
weighting of the volume is similar so that for variant V31 it can 
be concluded that the higher volume has a positive influence on 
the tooth flank pressure and the tooth root stress, see Figure 10 
bottom.

Table 1  Theoretical volume of the selected variants

Variant Main optimization 
objective

Theoretical 
volume / I

Rel. change to Start
variant

Start 4.385
V11 Volume / Efficiency 3.866 –11.8%
V14 Volume 2.906 –33.7%
V31 Efficiency (29.1%) 4.427 0.9%
V52 Efficiency (38.7 %) 3.799 –13.4%

Figure 10 �� Comparison of the Resulting Key Values of the Different Optimization Variants

Figure 11 �� Results of the Selected Variants (Sun – Planet 1 Mesh)

52 GEAR TECHNOLOGY  |  May 2022
[www.geartechnology.com]

technical



The calculation results of the four selected variants are shown 
for the sun-planet 1 mesh in Figure  11. First, the significantly 
lower peak-to-peak transmission error of all optimized variants 
can be seen. The results for the load-carrying capacity (tooth 
flank pressure and tooth root stress) of the balanced weighting 
variant V11 are comparable to those of the variant Start. The 
volume-optimized variant V14 and the efficiency-optimized 
variant V52 show a higher tooth flank pressure. On the one 
hand, this is due to a smaller center distance of both variants 
and, on the other hand, to a smaller normal module of vari-
ant V52. Due to the smaller normal module of variant V52, the 
tooth root stress of this variant is the highest. The efficiency of 
variant V31 and variant V52 is comparable to that of variant 
Start. The assumption that the higher volume of variant V31 
compared to variant V52 has a positive influence on the load-
carrying capacity with comparable efficiency is shown.

The results for the planet 2-ring gear mesh are shown in 
Figure  12. The peak-to-peak transmission error is comparable 
for all variants. The variant Start has the lowest tooth root stress 
and at the same time the highest tooth flank pressure. The opti-
mized variants offer a more balanced design in terms of load-
carrying capacity. The efficiency of the variant Start is the lowest 
together with the volume-optimized variant V14. The tooth root 
stress of variant V52 shows the highest value for both gears. The 
efficiency of variants V31 and V52 is similar and comparatively 
higher than that of the other variants.

In summary, variant V14, with slightly lower efficiency in the 
sun-planet 1 mesh, enables a 33.7% reduction in volume. With 
variant V11, a reduction in excitation is possible with compara-
ble overall efficiency and a simultaneous reduction in volume of 
11.8%. The variants V31 and V52 offer increased efficiency and 
lowered excitation. Depending on the additional dynamic loads 
and the other boundary conditions of the application, it must 
be weighted higher for variants V31 and V52 whether the lower 
volume of variant V52 or the higher load-carrying capacity of 
variant V31 is more appropriate.

Summary and Outlook
In applications with a high power density and high gear ratio 
requirements, such as electrically driven vehicles, stepped plan-
etary gear stages can be used. The design of planetary and 
stepped planetary gear stages is related to assembly restrictions 
due to their kinematic overdetermination. Generally, numeri-
cal optimization methods are increasingly used for gear design. 
Due to the high number of different design variables for stepped 
planetary gear stages, optimization methods are suitable for the 
design and optimization.

The objective of this paper is to develop a method for the 
algorithm-based design and optimization of the macrogeometry 
of stepped planetary gear stages. For this purpose, a method 
for the identification of suitable tooth number combinations is 
presented first. The developed optimization method offers the 
advantage of an FE-based evaluation of the operational behav-
ior. A particle swarm algorithm is used to optimize 18 geometry 
parameters. In the optimization, different operating conditions 
are considered and weighted against each other.

The developed method is applied to the design and optimiza-
tion of a stepped planetary gear stage for an electrically driven 
compact car. For this purpose, ten differently weighted variants 
are defined and compared. The volume, the efficiency, the peak-
to-peak transmission error, the tooth flank pressure, and the 
tooth root stresses are used as evaluation variables. The weight-
ing components’ efficiency and volume are varied for the differ-
ent variants.

A comparison of the objective values of the different opti-
mization variants shows a very good correlation between the 
weighting of an optimization objective and its value. The vol-
ume of the gear stage can be reduced by 33.7% for the volume-
optimized variant V14. Despite this increase in power density, 
the characteristic values of the load-carrying capacity of this 
variant are comparable to those of the initial variant, and the 
efficiency is only slightly lower. The two other weighting vari-
ants analyzed in detail, V31 and V52, offer higher average effi-
ciency than the initial variant.

Overall, the developed method shows further potential in the 
design and optimization of stepped planetary gear stages. The 

Figure 12 �� Results of the Selected Variants (Planet 2 – Ring Gear Mesh)
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operational behavior of the different optimization variants can 
be evaluated for a final selection in the multi-body simulation 
under dynamic operating conditions. Furthermore, an optimi-
zation of the microgeometry should be performed, considering 
the interaction and displacements of the gears. 
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