
Calculation of the Tooth Root Load 
Carrying Capacity of Beveloid Gears
C. Brecher, M. Brumm and J. Henser

Printed with permission of the copyright holder, the American Gear Manufacturers Association, 1001 N. Fairfax Street, Fifth Floor, Alexandria, VA 22314-1587. Statements 
presented in this paper are those of the author(s) and may not represent the position or opinion of the American Gear Manufacturers Association.

In this paper, two developed methods of tooth root load carrying capacity calculations for beveloid 
gears with parallel axes are presented, in part utilizing WZL software GearGenerator and ZaKo3D. 
One method calculates the tooth root load-carrying capacity in an FE-based approach. For the other, 
analytic formulas are employed to calculate the tooth root load-carrying capacity of beveloid gears. To 
conclude, both methods are applied to a test gear. The methods are compared both to each other and 
to other tests on beveloid gears with parallel axes in test bench trials.

Introduction and Challenge
A particular gear type which becomes 
more and more important is the bev-
eloid gear, also known as conical involute 
gear. This is mainly due to their ability 
to realize small crossing angles between 
shafts and they can be produced eco-
nomically on conventional gear grind-
ing machines (Refs. 1–2). Beveloid gears 
have been used in marine applications, 
for example, for many years (Refs. 3–5). 
In recent years the use of beveloid gears 
in the automotive sector has increased 
(Refs. 6–7). Here the beveloid gear is 
used, for example in four wheel drives 
to transmit torque and rotation from the 
output of the gearbox to a front axle that 
may not be parallel.

Geometrical characteristics of beveloid 
gears. Beveloid gears are used to transmit 
torque and rotation between elements of 
crossing, skew or parallel axes (Ref. 6). 
The geometry of beveloid gears is derived 
from cylindrical spur or helical gears. The 
base circle and the pitch circle of bev-
eloids are cylindrical, as presented in the 
middle section of Figure 1. The pitch and 
the module are constant along the tooth 
width. The difference between beveloid 
gears and cylindrical gears is the varying 
profile shift along the tooth width to real-
ize crossed or skew axes. For realizing the 
varying profile shift, the root cone angle θf 
is defined which is generated during gear 
cutting and gear grinding by a change of 
the feed during the process. The form of 
the tip of a beveloid gear is usually conical. 
The tip cone angle θa is determined by the 
geometry of the workpiece.

A special use of beveloid gears is the 
arrangement with parallel axes. This is real-

ized by two meshing beveloids that have a 
cone angle θ of the same absolute value but 
with opposite orientation (Ref. 2).

Another gear type which is used for 
realizing crossing or skew axes is the 
bevel gear. Bevel gears have a coni-
cal pitch and base envelope. This results 
in a varying module m along the tooth 
width (Ref. 2). Beveloids are usually pre-
ferred to bevel gears when small crossing 
angles must be realized due to manufac-
turing limits of bevel gears. This is related 
to the long cone distances of gears with 
small cone angles which require substan-
tial dimensions of the bevel gear cutting 
machine (Ref. 8).

Contact behavior of beveloid gears. 
Beveloid gears can be mounted with par-
allel, crossed or skew axes. The axis ori-
entation has substantial influence on the 
gear mesh (Fig. 2). In Figure 2 (left) a 
typical contact pattern of beveloid with 
parallel axes is presented. The contact 

pattern is spread over the whole flank. 
On the right side of Figure 2 a typical 
contact pattern of beveloid gears with 
crossed axes is illustrated. Two involute 
beveloid gears with crossed axes have 
point contact. The resulting contact pat-
tern is narrower than the contact pattern 
of beveloid gears with parallel axes. To 
achieve a full contact pattern of beveloid 
gears with crossed or skew axes at least 
one gear has to be designed with non-
involute flanks. In this case, the manufac-
turing with standard methods like gener-
ating grinding is no longer possible. For 
some applications beveloid gears with 
conjugated flanks are manufactured by 
topological grinding to achieve nearly full 
contact (Ref. 6) but for most applications 
this manufacturing method is avoided for 
economic reasons.

Challenge. To achieve a high power/
weight ratio, a precise calculation of 
the gear load and load carrying capac-

Figure 1  Geometrical characteristics of beveloid gears (Ref. 2).
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ity is necessary to design gears in an eco-
nomical way. At the state of the art, no 
approved method for the tooth root load 
carrying capacity calculation for beveloid 
gears exists. Therefore the beveloid gear 
is approximated by a substitute spur gear 
with the gear data of the middle transverse 
section of the beveloid gear. The impreci-
sion of this method is shown in Figure 3.

In the diagrams the tooth root stresses 
of a beveloid gear and a substitute spur 
gear are compared. The beveloid gear has 
an axis angle of 7.2°. The substitute spur 
gear is derived from the gear data of the 
middle transverse section of the beveloid 
gear. It can be seen that the stresses of the 
beveloid are significant higher. Reasons 
for this are the different root fillet geom-
etry and the different contact behavior. 
Thus the calculation of the tooth root 
load carrying capacity of beveloid gears 
with a substitute spur gear according to 
existing standards for cylindrical gears is 
not possible without further ado.

A more precise calculation meth-
od can lead to a better design of bev-
eloid gears with a higher power/weight 
ratio. Furthermore no simulation meth-
od for the running behavior of bev-
eloid gears with and without load exists. 
Such a method could determine the 
tooth root load carrying capacity for a 
large number of variants in a short time. 
Therefore the project “Development and 
Verification of a Method to Calculate the 
Tooth Root Load-Carrying Capacity of 
Beveloid Gears,” which is sponsored by 
the German research funding organiza-
tion Deutsche Forschungsgemeinschaft 
(DFG), has been initialized.

Objective and Approach
In this paper the development of two 
calculation methods for the tooth root 
load carrying capacity of beveloid gears 
with parallel axes is described. In Error! 
Reference source not found. the approach 
for the development of these methods 
is illustrated. The initial point is the 
determination of the tooth root fatigue 
strength of beveloid gears on a test rig. 
The results are used to validate a local 
based calculation method to calculate the 
tooth root load carrying capacity of bev-
eloid gears.

The initial step of the local based 
calculation method is the manufactur-
ing simulation with the WZL software 

Figure 2  Contact characteristics of beveloid gears.

Figure 3  Comparison of the tooth root stresses of a beveloid gear and its substitute 
cylindrical gear.

Figure 4  Approach for developing calculation methods for tooth root load carrying capacity 
of beveloid gears.
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GearGenerator. In the manufacturing 
simulation, a 3D geometry of the bev-
eloid gear is created by simulating the 
generating grinding process (Refs. 1, 9). 
The resulting beveloid geometries are 
used in an FE-based tooth contact anal-
ysis with the WZL software ZaKo3D, 
which is able to calculate the tooth root 
stresses of several gear types during 
meshing (Ref. 10). From these stresses 
and further parameters (e.g., local mate-
rial properties) the tooth root load- carry-
ing capacity is calculated in an approach 
based on the weakest link model of 
Weibull (Refs. 11–13).

After the local-based calculation meth-
od is validated, this method is used to 
derive a standard based calculation meth-
od for beveloid gears. The standard based 
calculation method uses analytic formu-
las to calculate the tooth root load car-
rying capacity of beveloid gears. In this 
method the tooth root stresses of bev-

eloid gears are compared to the tooth root 
stresses of cylindrical gears. The effects 
which, observed during this comparison, 
are described and formulas are derived to 
take these effects into account.

Test Bench Trials
To detect the tooth root bending strength 
of a beveloid gear, a back-to-back test rig 
is used according to DIN 51354–Part 1, 
which uses the power circuit principle. 
The setup is illustrated in Figure 5. The 
tested beveloid gears are mounted in a 
gear box. They are connected by shafts 
to a transmission gear box. This setup is 
called power circuit. The test gear box 
is equipped with cylindrical gears. The 
cylindrical gears have the same gear data 
as the beveloids, but the cone angle is 
θ = 0°. The profile shift of the cylindrical 
gears is taken from the middle section of 
the beveloid gears. To avoid damage, the 
test gears are designed significantly wider 

than the beveloid gears. It is possible to 
include a torque into the power circuit at 
the coupling which is mounted at one of 
the shafts. The other shaft is designed as 
torque shaft. An electric motor is used to 
drive the gears. Since the torque is real-
ized by the power circuit, the motor only 
needs to apply power into the system that 
corresponds to the power losses due to, 
for example, friction.

The gear data of the test gears is pre-
sented in Figure 6 (left). To use the test 
principle of the back-to-back test rig 
according to DIN 51354, Part 1, paral-
lel axes are used with a center distance of 
a = 91.5 mm. The module of the gears is 
mn = 2 mm; the helix angle is β½ = 3.024°; 
and the number of teeth are z½ = 45/39; 
further, the cone angle of Gear 1 is 
θ1 = 3.6°. To realize parallel axes, the cone 
angle of Gear 2 is θ2 = −3.6°.

The goal of the tests is to determine the 
fatigue limit of the test gears for a prob-
ability of survival of PS = 50%; the prin-
ciple used is the staircase method accord-
ing to Hück. In this method the test load 
is dependent on the result of the previous 
test run. The load is reduced at break-
age and increased at run-out. In these 
tests the load step is fixed at ΔT2 = 25 Nm. 
A complete test run is reached if Gear 
2 experiences n2 = 3,000,000 load cycles 
without root breakage.

The results of the test are presented in 
Figure 6 (left). In the diagrams the test 
results are marked at the torque used in 
each test. The cross represents a break-
age during the test; a filled circle rep-
resents test run-out. Invalid results are 
marked with a void circle. To take the 
test result of the last test (damage or test 
run-out) into account, a fictitious point 
is added after the last test. The fictitious 
point is marked with a void square. For 
the evaluation, all valid points and the 
fictitious point are used. This results in 
a torque for a probability of survival of 
50% of T2 = 563.64 Nm for Flank 1, and 
of T2 = 565.91 Nm for Flank 2; the fatigue 
strengths of both flank sides are similar.

Local-Based Calculation of Tooth 
Root Load-Carrying Capacity
The first method to calculate tooth root 
load-carrying capacity of beveloid gears 
is a local-based method. In this method 
the probability of survival is calculated 
locally for each point in the tooth root. 

Figure 5  Back-to-back gear test rig according to DIN 51354, Part 1.

Figure 6  Results of the test bench trials.
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In the next section the calculation is pre-
sented briefly. This is followed by the 
application of the calculation method to 
the test gears that were already used for 
the test rig trials in the previous chapter.

Simulation method. In this approach 
three programs are used in sequence to 
calculate tooth root load-carrying capac-
ity for beveloid gears. Figure 7 presents a 
brief overview of the three programs.

The first program in the simulation 
chain is the software GearGenerator, 
which calculates a 3D model of the bev-
eloid gear via generating grinding simu-
lation. The software is based on the cal-
culation method of Röthlingshöfer (Refs. 
14, 1). The simulation uses the tool data, 
the gear data and the information about 
the axis setup of the machine (e.g., tilt-
ing or linked feeds) to calculate the tool 
geometry, the tool movements and, final-
ly, the resulting gear geometry accord-
ing to the laws of gearing (Ref. 15). A 
3D model of the gear is provided as out-
put. For the microgeometry analysis, the 
resulting geometry is compared to an ide-
ally shaped involute and then plotted as 
profile and lead plot. Supplementing the 
manufacturing simulation, an algorithm 
was developed according to the Verein 
Deutscher Ingenieure (VDI) standard, 
VDI 2607 to evaluate the flank devia-
tions (Refs. 16, 9). The excellent simula-
tion accuracy of this method is shown 
by Röthlingshöfer in Chapter 5.3.2 of his 
dissertation (Ref. 1).

The 3D models of the gears generat-
ed by GearGenerator are used as input 
for the tooth contact analysis soft-
ware ZaKo3D. The general approach of 
ZaKo3D is the simulation of the 3D tooth 
contact. Therefore the geometric data of 
the flank and an FE model of a gear sec-
tion are needed as input. Furthermore, 
pitch and assembly deviations can be 
considered. During the simulation the 
contact distances, loads, and deflections 
on the tooth are calculated. The results 
of the calculation can be displayed in 
established diagrams to support the gear 
designer during the development process.

The flank geometry is provided at the 
outset; in this work the geometry is taken 
from GearGenerator. Alternative input 
files, such as measurement data files 
from coordinate measurement machines, 
are possible as well. Regardless of the 
source of the input data, the flank must 

be defined by points in Cartesian coor-
dinates and the direction of the normal 
vectors at each flank point.

In order to be able to simulate loaded 
condition, FE data has to be generated out 
of the flank data. The FE model contains 
the information about the stiffness of the 
gear; it is created by an automatic FE mesh 
generator for gear teeth (Ref. 10). The FE 
mesh generator needs the flank geom-
etry to create the mesh. Furthermore, 
information about the FE node distribu-
tion inside the tooth is needed. Finally, 
the material properties must be defined. 
Each point of the modeled flanks is load-
ed with unit forces in each, x-, y- and z- 
direction. Using this model, a standard 
FE solver is used to calculate so-called 
influence coefficients. The influence coef-
ficients hold the information about the 
deflection of all points during the applica-
tion of each unit force. This contains the 
displacement influence coefficients αii that 
are on the diagonal of the influence coeffi-
cient matrix, as well as the cross influence 
coefficients αij. To complete the input data, 
information about the positioning of the 
gears is needed. Different gear types can 
be positioned in ZaKo3D; e.g., spur gears, 
bevel gears, face gears and beveloid gears. 
The input of pitch deviations, microgeom-
etry deviations and corrections, assembly 
deviations or different loads can be done 
by the user and is optional.

The tooth contact analysis starts with 
the calculation of the contact distances 
of the flanks during the mesh after read-
ing the input data. This is done for the 
given number of rolling positions and for 
each flank point of all the flanks in con-
tact. With these contact distances and 

the information about the stiffness from 
the influence coefficients, a mathematic 
spring model is defined (Ref.18). Since 
the number of contact points in a roll-
ing position and the force at each contact 
point influence each other, it is necessary 
to solve the spring model iteratively.

From these calculations the contact 
pattern and the transmission error can 
be derived load-free and under load. The 
transmission error of a gear is caused by 
geometric errors of the flanks (load-free 
content) and deflections (load content) 
of the gear, and gives a good impression 
of the dynamic gear excitation (Ref. 17). 
The course of the transmission error can 
be displayed over time and by performing 
a fast Fourier transformation in the fre-
quency domain.

Using the forces on the nodes and 
the flank areas to which these forces are 
applied, the resulting pressure can be 
calculated. The flank area correspond-
ing to a node is defined by the grid size 
(Ref. 18). The surface stress distribution 
on the flank has a major influence on 
the wear resistance of the flanks, and a 
reduction can lower the risk of pitting 
(surface fatigue) and improve the flank 
load-carrying capacity (Refs. 19–20). 
Furthermore, the ease-off, which repre-
sents the contact distances in the mesh 
area, is calculated load-free. This output 
data provides information about the gear 
behavior and can be used to predict the 
quality of the calculated gear design. This 
is necessary to reduce the needed number 
of design validation tests.

Tooth root stresses are calculated by 
ZaKo3D in an FE-based approach. The 
FE model, which is used for the influence 

Figure 7  Simulation methodology (Ref. 13).
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coefficient simulation, is applied with the 
forces that occur during discrete mesh 
positions. The stress tensors are calculated 
at each FE node in the whole root sec-
tion and are evaluated according to several 
stress hypotheses (e.g., the von Mises stress 
hypothesis). The stress tensors can also be 
used to calculate the probability of survival 
in a local-based approach (Ref. 10).

The local-based calculation of the 
tooth root load-carrying capacity is based 
on the “weakest link” concept, invented 
by Waloddi Weibull. The weakest link 
concept says that not just the maximum 
stress must be taken into account for the 
fatigue determination; the distribution 
of weakest links in the material must be 
considered as well. In the weakest link 
concept the load stresses σa, the fatigue 
limit σD, the volume V and the Weibull 
module k (for the statistical distribution) 
are taken into account. The possibility to 

apply the weakest link model to gears was 
first investigated by Dr. Brömsen and Dr. 
Zuber. In their dissertations the calcula-
tion of the 50% probability of survival 
PS/50% in pulsator tests is developed and 
verified (Refs. 21, 11, 12).

An FE model of the gear is used to cal-
culate the tooth root load-carrying capac-
ity of gears; input data are the stress ten-
sors which were calculated in ZaKo3D. 
The material parameters — hardness, 
residual stresses and oxidation — are used 
in this method and the surface rough-
ness in the root fillet is considered. With 
this input data the probability of survival 
PS is calculated for each FE element. This 
is done by comparing the stress ampli-
tude σa to the fatigue strength σD in the 
so-called integration points of the FE ele-
ments. The fatigue strength is calculated 
by empirical expressions from the mate-
rial parameters. By numerical integration 

this comparison is extended to the whole 
FE element. Multiplying the probabilities 
of survival of each FE element in the root 
equals the probability of survival of the 
total tooth root.

Application to the test gears. The 
method described in the previous sec-
tion is applied to the gear used in the 
fatigue tests; the load is applied on Flank 
2 (see Fig. 8). In the two diagrams at the 
top, the hardness profile and the resid-
ual stress profile used for the calcula-
tions are presented. For adjusting align-
ment errors and microgeometry cor-
rections, the contact pattern was used. 
In the lower-left diagram the probabil-
ity of survival is plotted over the torque 
at Gear 2. For low loads the probabil-
ity of survival approaches PS = 1. For 
high loads the probability of survival 
approaches PS = 0. The probability of sur-
vival PS drops significantly — between 
T2 = 500 Nm and T2 = 600 Nm. At approxi-
mately T2 = 576 Nm, the probability of 
survival reaches 50%. In the test bench 
trials, described earlier, the torque 
T2 = 565.91 Nm leads to a probability of 
survival of 50% (see Fig. 8, lower right). 
The difference between the simulation 
and the test rig results is lower than 2%. 
This shows the good correlation between 
simulation and testing. Hence it is pos-
sible to use the simulation to develop a 
standard-based approach.

Standard-Based Calculation 
Method for Tooth Root Load-
Carrying Capacity
Earlier it was shown that the stresses cal-
culated in ZaKo3D can be used to calcu-
late the tooth root load-carrying capac-
ity of beveloid gears. Thus the software is 
used to develop a standard-based method 
for calculating tooth root stresses of bev-
eloid gears. The approach of the stan-
dard-based calculation method is to use 
the existing calculation method of ISO 
6336 by modifying its factors (Ref. 20). 
The approach for the modification is 
plotted in Figure 9 (left). In the upper 
part, the formula from ISO 6336 (Ref. 20) 
used to calculate the tooth root stress of 
cylindrical gears is presented. The Y- and 
K- factors, which are defined for cylindri-
cal gear, have to be adapted to calculate 
tooth root stresses for beveloid gears.

In the approach presented, it is 
assumed that the rim is sufficiently thick 

Figure 8  Application of local-based calculation method to a test gear.

Figure 9  Analytical calculation for tooth root load carrying capacity of beveloid gears 
with parallel axes.
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and that no deep tooth forms are inves-
tigated. Accordingly, the rim thickness 
factor YB and the deep tooth factor YDT 
have the value 1 and will not be consid-
ered further.

Under the assumption that helix angle 
deviations, profile corrections, and the 
pitch errors have the same effects for 
cylindrical gears and beveloid gears, and 
that the average gear stiffness of a bev-
eloid and its derived cylindrical gear are 
similar, the formulas for the transverse 
load factor KFβ, the face load factor KFα 
and the dynamic factor KV for the cal-
culation of beveloid gears can be direct-
ly used from the standard calculation 
for cylindrical gears. Beveloid gears have 
been derived with cone angles between 
θ = −7.2° and θ = 7.2° from a cylindrical. 
For all versions the average tooth stiff-
ness cγ has been calculated with ZaKo3D. 
In Figure 9, bottom right, the relationship 
between the average tooth stiffness of the 
beveloid variants cγ,Bev and the relation of 
the average tooth stiffness of the cylindri-
cal gears cγ,Cyl is shown; only minor dif-
ferences can be observed. The maximal 
deviation is 3.3%, so that the previously 
mentioned assumption of a similar aver-
age tooth stiffness of cylindrical gears 
and beveloid gears is achieved.

The application factor KA depends only 
on the engine and the load of the gear 
box. The factor can be transferred from 
the calculation method of cylindrical 
gears into the calculation method of bev-
eloid gears without any adaptation.

What remains are the form factor YF, 
the stress correction factor YS and the 
helix angle factor Yβ; these are related to 
the geometry and the contact conditions. 
Due to the significant changes between 
cylindrical gears and beveloid gears, the 
factors are redefined. In the next section, 
these geometry-dependent factors for 
beveloid gears are developed. Included 
are the beveloid form factor YF,Bev and the 
beveloid stress correction factor YS,Bev. 
After these the influence of the overlap 
ratio and of the helix angle on the tooth 
root stress of beveloid gears are specified 
by the beveloid helix angle factor Yβ,Bev 
later sections of this paper.

Form factor YF,Bev and stress correction 
factor YS,Bev. Beveloid gears change their 
profile shift with the tooth width (Ref. 1). 
That results in changes of the cross-sec-
tion of the gearing and the notch in the 

tooth root. Figure 10 shows a beveloid gear 
that illustrates that relationship. On the 
left side, the beveloid gear face side with 
a low profile shift is illustrated. On that 
face side thin tooth roots with a small 
normal chord sFn occur. Furthermore, 
the curvature of the tooth root curve is 
low; therefore the root radius ρF on that 
face side is high. The right side shows the 
beveloid gear’s face side with a high pro-
file shift. On that side the teeth are thick, 
which results in a long normal chord sFn. 
The root curve displays a low root radius 
ρF. The bending moment arm hFe for load 
incidence at the outer point of contact 
depends on the transverse contact ratio 
εα. This depends on several factors, which 
make a simple statement about the rela-
tive change of the profile shift impossible.

To detect the influence from the vary-
ing transverse sections on the tooth 
root stresses, the profile shift at the axial 
coordinate with the maximal tooth root 
stresses is used. First, this is determined 
in FE calculations. The estimation by 
analytical equations has to be developed.

Supplied with the data of the face sec-
tion of the maximal tooth root stress, a 
cylindrical, substitute helical gear is gen-
erated that is used to determine the helix 
angle factor and the stress correction fac-
tor. Since these depend on the profile 
shift of the critical face section, they are 
called beveloid form factor YF,Bev and bev-
eloid stress correction factor YS,Bev.

Helix factor, Yβ. The contact condi-
tions of beveloid gears with parallel axes 
are significantly different from the con-
tact conditions of cylindrical gears (Refs. 
22, 2). The differences are illustrated 

in Figure 11 by comparing the fields of 
action of both gear types. The left side 
shows the field of action of a helical 
cylindrical gear; the field of action is rect-
angular. The width is limited by the active 
tooth width b of both gears. The length 
is formed by the root and the tip length 
of engagement. The lines of contact are 
shown as dashed lines and are inclined 
at the base helix angle within the field 
of action. In direction of the length of 
engagement, the distance of the lines of 
action is described by the transverse base 
pitch on the path of contact pet. The over-
lap ratio εβ is calculated with Equation 
1 from the tooth width b, the base helix 
angle βb and the transverse base pitch on 
the path of contact pet (Ref. 23):

(1)

εβ = b tan βbpet

where
 εβ is overlap ratio
 b is (active) tooth width, mm
 βb is base helix angle, degrees
 pet is transverse base pitch on the path 

of contact, mm

The right side of Figure 11 shows a 
field of action of a helical beveloid gear. 
Like cylindrical gears, the width of the 
field of action is limited by the active 
tooth width b. However, different tip 
and root lines of action on the face sec-
tions lead to a parallelogram-shaped field 
of action. For a fully accurate illustra-
tion of the field of action, the boundar-
ies at the inlet and outlet must be drawn 
hyperbolically (Ref. 23). The curvatures 
of hyperbolas of conical spur gears are 
usually so small that they can be replaced 

Figure 10  Determining values for the calculation of the beveloid form factor YF,Bev and the beveloid 
stress correction factor YS,Bev.
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by straight lines. The lines of action are 
in the field of action diagonally, as it is 
observed for helical cylindrical gears, 
but for the fact that the base helix angle 
on the right flank βb,R and the base helix 
angle of the left flank βb,L differ from each 
other (Ref. 22).

The overlap ratio of beveloid gears is 
composed of two parts. The first com-
ponent is the overlap angle of the flank 
lines φβR,L. This describes the angle that 
is enclosed by the axial planes at the 
endpoints of the flank lines. This part 
of the overlap ratio is calculated anal-
ogous to cylindrical gears (Eq. 2). For 
beveloid gears, the helix angles on the 
right and left flank must be considered, 
dependent on the flank side, so that the 
overlap angle is calculated separately for 
both sides. The second part is the over-
lap angle of the field of action φFMR,L. The 
field of action is inclined at the angles 
βFRf,L, and βFaR,L on the entry and on the 
exit side (Fig. 11). This results in the field 

entry overlap angle φFMR,L and the field 
exit overlap angle φFMR,L, (Eqs. 3, 4). The 
overlap angle of the field of action φFMR,L 
is determined by the average of the field 
entry overlap angle φFfR,L and the field exit 
overlap angles φFaR,L (Ref. 22).

(2)

φβR,L = 2 b tan βbR,L
dbR,L

(3)

φFfR,L = 2 b tan βFfR,L
dbR,L

(4)

φFaR,L = 2 b tan βFaR,L
dbR,L

where
 φβR,L is overlap angle of the flank line, 

degrees
 b is (active) tooth width, mm
 βbR,L is base helix angle, degrees
 dbR,L is base circle diameter, mm
 φfR,L is field entry overlap angles, degrees
 φaR,L is field exit overlap angles, degrees
 βFfR,L is field entry inclination angle, 

degrees

 βFaR,L is field exit inclination angle, 
degrees

The overlap ratio of beveloid gears with 
parallel axis is calculated with Equation 
5 by the difference between the over-
lap angle of the flank lines φβR,L and the 
mean field overlap angle φFMR,L, divided 
by the angular pitch τ, which is calcu-
lated according to Equation 6 (Ref. 22). 
Depending on orientation of the base 
helix angle of the line of action, the con-
tact ratio can be increased or decreased. 
This relation can be observed by compar-
ing the field of action of a beveloid gear 
and the field of action of a cylindrical gear. 
On the right section of Figure 11, the field 
of action of a beveloid gear and the field of 
action of a cylindrical gear with the data of 
the middle transverse section are super-
imposed. It is shown that the contact at 
the beveloid gear starts earlier due to the 
helix angle of the field of action at the inlet 
side βFfR,L and the contact at the beveloid 
gear ends later due to the helix angle of 
the field of action at the outlet side βFaR,L. 
The contact ratio is consequently higher 
than the contact ratio of a cylindrical gear; 
however, if the helix angle is more right-
oriented, than left so, the relationship then 
changes and smaller contact ratio occurs 
for the beveloid gear.

(5)

εβ,BevR,L = φbR,L − φMR,L
τ

(6)

τ = 2 π
z

where
 εβ,BevR,L is overlap ratio (beveloid)
 φbR,L is overlap angle of the flank line, 

degrees
 φMR,L is mean field overlap angle, 

degrees
 τ is pitch angle, degrees
 z is number of teeth

The calculation of the beveloid helix 
factor Yβ,BevR,L for beveloid gears is anal-
ogous to the calculation of the contact 
ratio factor of a cylindrical gear. For the 
overlap ratio, the beveloid helix factor of 
beveloid gears according to Equation 5 
is used. The helix angle of the appropri-
ate flank side is used since the contact 
ratio and the helix angle usually differ for 
both flank sides. The beveloid helix factor 
Yβ,BevR,L must also be calculated separately 
for each flank.

(7)

YβBevR,L = 1 − εβBevR,L
βR,L
120Figure 12  Method for investigation of beveloid factors.

Figure 11  Calculation of overlap ratio of beveloids.
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where
 YβBevR,L is beveloid helix factor
 βR,L is helix angle, degrees
 εβBevR,L is overlap ratio (beveloid)

Application to a sample gear. The cal-
culation method presented earlier in this 
paper will be applied to two sample gears 
in the following paragraphs. A detailed 
analysis of the individual calculation fac-
tors and their combinations will be per-
formed. The strategy in order to do so is 
shown in Figure 12.

Basic geometry will be defined for 
a test gear. From that basic geome-
try a cylindrical gear — also described 
as a beveloid gear with the cone angle 
θ = 0° — as well as several beveloid gears 
with parallel axes — will be derived. For 
all variants the maximum tooth root 
stresses will be calculated with ZaKo3D. 
Subsequently a conversion of the tooth 
root stress of the cylindrical gear into 
the tooth root stress of the derived bev-
eloid gear will be performed using the 
approach presented earlier in this paper. 
Those calculated tooth root stresses will 
be compared to the results from ZaKo3D.

The sample gear to which the calcu-
lation method will be applied has the 
following gear data: The normal mod-
ule is mn = 2 mm and the helix angle is 
β = 23.024°. The cone angle will be var-
ied between θ = −7.2° and θ = 7.2°. Gear 2 
has a face width of b2 = 16.0 mm, which is 
narrower than Gear 1, with a face width 
of b1 = 16.8 mm.

For all variants a tooth contact analysis 
with ZaKo3D was performed. The model 
used to calculate the tooth root stresses in 
ZaKo3D has a flank resolution of 30 grid 

points in profile direction and 30 grid 
points in flank direction for Gear 1. Gear 
2 has a flank resolution of 31 grid points 
in profile direction and 31 grid points in 
flank direction.

The gearing will be loaded with 
a torque of T2 = 475 Nm on Gear 2. In 
the whole tooth root area the tooth root 
stresses will be evaluated at the FE nodes 
according to the von Mises criteria. In 
Figure 13 the maxima of the von Mises-
equivalent stress throughout the whole 
tooth root area for some of the sam-
ple gearings with the considered cone 
angles are shown. The place where the 
maximum von-Mises-equivalent stress 
appears is indicated by an arrow. For all 
variants this place is located on the left of 
the tooth flank. The maximum tooth root 
stresses are located directly at the heel for 
the variants with negative cone angles. 
Note that with increasing cone angle the 
maximum stress location moves slightly 
towards the center of the gearing.

The face section with the maximum 
tooth root stresses are used to calculate 
the factors YF,Bev and YF,Bev for all variants 
for the following calculations: the face 
sections differ in the addendum modi-
fications x1 and x2 and in the tip circle 
diameters da1 and da2 of gear and pinion. 
As the tip circle diameter is related to 
the addendum modification through the 
addendum factor, only the corresponding 
addendum modification will be listed.

In order to evaluate the influence of the 
Y factors on the calculation of the tooth 
root stresses, a conversion of the maxi-
mum tooth root stress of a cylindrical 
gear to the maximum tooth root stress 

of the beveloid variants was performed. 
The converted stresses were compared 
to the calculated tooth root stresses of 
ZaKo3D. The conversion is described 
through Equation 8. In the following the 
single factors of Equation 8 as well as 
combinations of those factors are exam-
ined. Thereby other factors shall not be 
considered. The respective fractions were 
deleted from Equation 8.

(8)
σv,2Bev = YF,Bev YS,Bev Yβ,Bev
σv,2Cyl YF,Cyl YS,Cyl Yβ,Cyl

where
 σv,2.Bev is maximum Von-Mises-Stress in 

the beveloid tooth root, N/mm2

 σv,2Cyl is maximum Von-Mises-Stress in 
the cylindrical gear’s tooth root, 
N/mm2

 YF,Bev is beveloid form factor
 YF,Cyl is form factor
 YS,Bev is beveloid stress correction factor
 YS,Cyl is stress correction factor
 Yβ,Bev is beveloid helix factor
 Yβ,Cyl is helix factor

In the upper left diagram of Figure 14, 
the tooth root stresses calculated with 
ZaKo3D are compared to the tooth root 
stresses calculated with Equation 8; here 
all Y-factors are considered. With the 
helix factor Yβ, the dependence of the 
maximum tooth root stress on the cone 
angle turns out to have a contrary course 
between the predicted maximum tooth 
root stresses and the ones calculated with 
ZaKo3D. Due to that, the combination 
of all factors is inappropriate in order to 
predict the maximum tooth root stresses 
for the considered beveloid gears.

In the three remaining plots in Figure 
14, only two of the three possible 
Y-factors are taken into consideration. In 
the upper right diagram the calculation 
of the tooth root stresses of the beveloid 
variants is performed on the basis of the 
tooth root stresses of the cylindrical gear 
σv2,Cyl, the form factor YF, and the stress 
correction factor YS. In the range of nega-
tive cone angles, the tooth root stress are 
predicted considerably lower than in the 
calculation with ZaKo3D. In the range 
of positive cone angles, higher tooth root 
stresses are predicted than were calculat-
ed with ZaKo3D. However, the deviations 
are small. Due to the underestimation of 
the tooth root stresses for negative cone 
angles, the combination of the form fac-
tor YF and the stress correction factor YS 
is not sufficient to predict the tooth root 

Figure 13  Stress maxima position of the sample gear in dependence of the cone 
angle (torque T2 = 475 Nm).
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stresses of the considered beveloid vari-
ants.

In the diagram on the lower left hand 
side the conversion of the tooth root 
stresses is performed on the basis of the 
tooth root stresses of the cylindrical gear 
σv2,Cyl, the form factor YF and the helix 
factor Yβ. The relationship between cone 
angle and maximum tooth root stress-
es shows strongly contrary tendencies. 
Hence combination of form factor YF and 
stress correction factor YS is not sufficient 
to predict the tooth root stresses of the 
considered beveloid variants.

In the lower right hand diagram the 
conversion of the tooth root stresses is 
performed on the basis of the tooth root 
stresses of the cylindrical gear σv2,Cyl, the 
stress correction factor YS and the helix 
factor Yβ. The tooth root stresses being 
calculated through the conversion match 
the tooth root stresses calculated with 
ZaKo3D very well; the maximum devia-

tion is 2.33%. Consequently the combina-
tion of the stress correction factor YS and 
helix factor Yβ suits very well in order to 
calculate the maximum tooth root stress-
es of the considered beveloid variants 
σv2,Bev from the tooth root stresses of the 
cylindrical gear version σv2,Cyl.

Conclusion
Earlier in this paper, an investigation into 
which Y-factors allow a conversion of the 
tooth root stresses of a cylindrical gear 
to the tooth root stresses of a beveloid 
gear with a high accordance to the cal-
culation results of ZaKo3D. The highest 
accordance to the results of ZaKo3D is 
achieved if the stress correction factors 
YS and the helix factor Yβ are used in the 
conversion while the form factor YF is not 
taken into consideration.

Due to the high accordance with the 
sample gears the conversion performed 
on the basis of the stress correction factor 

YS and the helix factor Yβ in order to cal-
culate the tooth root stresses of beveloids 
will be added to the calculation method. 
The form factor YF will furthermore be 
deducted from the data of the average 
transverse section. Under the boundary 
conditions described earlier, the calcula-
tion method for the tooth root stresses of 
beveloids results in Equations 9 and 10:

(9)

σF0,Bev =
Ft YF,Zyl Ys,Bev Yβ,Bevmn b (10)

σF,Bev = σF0,Bev KA KV KFβ KFα

where
 σF0,Bev is nominal tooth stress, N/mm2

 Ft is nominal tangential load, N
 b is tooth width, mm
 mn is normal module, mm
 YF,Zyl is form factor (mean transverse 

section)
 Ys,Bev is beveloid stress correction factor 

(critical transverse section
 Yb,Bev is beveloid helix factor
 σF,Bev is tooth root stress, N/mm2

 KA is application factor;
 KV is dynamic factor;
 KFβ is face load factor;
 KFα is transverse load factor.

An important part of calculating the 
form factor is the calculation of the tooth 
root critical section with the tooth root 
normal chord sFn and the tooth width b. 
High addendum modifications, as they 
appear at a beveloid’s heel, result in long 
tooth root normal chords and therefore 
a high section modulus of the cross-sec-
tion. Low addendum modifications, as 
they appear at a beveloid’s toe, result in 
short tooth root normal chords and a 
low section modulus. With beveloids, the 
profile shift changes alongside the tooth 
width. Therefore the length of the tooth 
root normal chords changes along the 
cross-section. This is outlined by a trap-
ezoidal cross-section of the beveloid at a 
section through the tooth root (Fig. 15). 
This is compared to the cross-section of 
a substitute gear with the gear data of the 
heel and a substitute gear with the gear 
data of the toe.

The gear data of the heel lead to an 
overestimation of the section modulus, 
while the toe’s section modulus is low. 
The use of the gear data of the average 
cross-section offers a good approach 
to approximate the section modulus of 
a beveloid gearing. This approach will 
require further investigation.

Figure 15  Conclusion.

Figure 14  Influence of the Y-factors on the tooth root stress calculation.
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Summary and outlook
In this paper, two developed methods 
for the tooth root load-carrying capacity 
calculation for beveloid gears with paral-
lel axes are presented. The first method 
calculates the tooth root load-carrying 
capacity in an FE-based approach. The 
model is used to calculate the tooth root 
load-carrying capacity of a test gear. The 
results show good correlation to investi-
gations on a back-to-back test rig.

The second method uses analytic for-
mulas to calculate the tooth root load-
carrying capacity of beveloid gears. In 
this method the tooth root load-carrying 
capacity of beveloid gears is compared 
to the tooth root load-carrying capac-
ity of conventional cylindrical gears. The 
effects observed during this comparison 
are described and formulas are derived to 
take these effects into account.

The new method submits changes on 
three Y-factors. The presented method 
shows for the sample gear a good corre-
lation. A validation on further cases has 
not been made yet. To define a method 
for an extensive scope more comparisons 
on further gear cases are scheduled.

Furthermore, the method introduced 
here is presently based on a numerical 
calculation of the location of the maxi-
mum tooth root stresses. To provide a 
closed analytical solution, the method has 
to be expanded by an analytical forecast 
of the location of the maximum tooth 
stresses. Finally, further verification tests 
are necessary to confirm whether the 
analytical calculation — especially the dif-
ferences in the loads of the flank — can 
give indication of the influence of the 
cone angle on the stress distribution. 
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