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Introduction
Classical gear designers use bending 

and contact stress formulas along with 
a series of correction factors for their 
design metrics (Ref. 1). The designer 
establishes the number of teeth, center 
distance, module, etc., so that the design 
will achieve durability performance 
goals. However, prior to completing the 
design, the designer must make some 
decisions regarding the profi le and lead 
modifi cations that must be specifi ed.

 These modifi cations, which are 
usually specifi ed as tolerance bands 
on profi le and lead charts, are used for 
several purposes, including:

• Compensation for misalignment, 
in that the peak stresses do not occur on 
the tooth edges
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•  Reduction of noise excitations
•  Minimization of scoring potential 

by minimizing loads at peak sliding 
regions of the contact  zone

The type of modifi cations needed to 
minimize one of the above factors is often 
in confl ict with the modifi cation needed 
to minimize the others. Also, one often 
fi nds that noise minimization is desired 
across a broad range of loads that are 
much lower than the durability design 
load. Thus, designers require a tool that 
allows them to create topographical 
modifi cations that provide a reasonable 
compromise between many design 
metrics (noise, stress, tribology, etc.) 
over a broad range of torques.

This paper presents a graphical 
procedure for selecting lead and profi le 

modifi cations that provide a good 
compromise of results for each of the 
above mentioned design factors. The 
procedure allows one to observe the 
impact of these modifi cations over a 
broad torque range on a large number of 
gear design metrics.

Background
Perfect involute profi les of both spur 

and helical gears only exhibit conjugate 
motion at no load conditions. Once load 
is applied to a gear pair, defl ections 
occur and the motion transfer is no 
longer conjugate. In order to get the 
motion back to some semblance of 
conjugacy, the tooth profi le is modifi ed, 
usually by the removal of material from 
portions of the tooth surface. Profi le 
modifi cations in the form of tip or root 
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relief compensate for tooth bending 
defl ections, and lead modifi cations in 
the form of either lead crown or end 
relief compensate for manufactured 
lead errors, shaft misalignments and 
shaft defl ections.

These concepts have been applied 
to gears for many years; some of the 
more classic treatises that refer to 
tooth modifi cations are presented in 
References 2–8. Since the contact 
regimes of spur and helical gears have 
some differences, the approaches to 
their modifi cation also have differences. 
In this paper, the concentration is on 
helical gears, but a brief discussion of 
the approaches that have been applied 
to both spur and helical gearing will be 
discussed in this section.

Spur gearing. Extensive research 
has been conducted on the profi le 
modifi cations that are appropriate for 
spur gears. However, one will fi nd that 
the following generalizations exist:

1. Apply tip relief on both the gear 
and pinion or tip and root relief on one 
of the members (Refs. 9–10).

2. For tip relief, start the modifi cation 
at the highest point of single-tooth 
contact, and for root relief start at the 
lowest point of single-tooth contact (use 
highest and lowest points of double-
tooth contact for spur gears with contact 
ratios greater than 2.0).

3. The amplitude of the relief should 
be at least as great as the peak mesh 
defl ection at the load in which smooth 
motion is desired. If one wishes to 
compensate for spacing errors, one 
should add the peak tooth-to-tooth 
spacing error of each gear to the mesh 
defl ection value (Ref. 11).

4. Most investigators have used 
either a linear or parabolic shape for the 
relief (Refs. 12–13).

5. Some gears required some 
combination of linear and parabolic 
modifi cation in order to obtain more 
perfect compensation for the nonlinear 
tooth pair defl ection (Ref. 14).

The above procedure yields a 
modifi cation that works well at the 
“design” load, but as the load either 
increases or decreases, the motion error 
will increase (Ref. 15). In order to reduce 

the torque sensitivity, a scheme that 
combines profi le modifi cations with lead 
crowning has been applied (Ref. 16).

Another approach to the reduction in 
noise excitations at lower loads is to use 
what is called “short relief,” where the 
start of the modifi cation is moved closer 
to the tooth extremes (Refs. 9 and 17).

In this scheme, it is possible to have 
zero transmission error at no load and 
still have a reduction of excitation at 
higher loads. However, the reduction at 
the design load will be much less than 
for the “long relief” method described 
above.

For narrow face width spur gears, 
correction in the face width direction 
is usually not used, but for medium-to-
wide face widths, lead crowning may be 
needed in order to compensate for lead 
errors and misalignment. When lead 
crowning is used, one must reassess 
the scheme for determining the best 
modifi cation.

Helical gearing. In order to get 
adequate benefi ts of the axial load 
sharing of helical gears, they usually 
have medium-to-wide face widths that 
likely require some lead crowning in 
order to compensate for misalignment. 
Many gear researchers (Refs. 18–27) 
have shown the effects of crowning 

shape and amplitude on load distribution. 
In each instance it was shown that for a 
given level of misalignment, there is a 
range of crowning that will provide a 
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Table 1: Helical Gear Geometry 

  GEAR1    GEAR2
Number of Teeth 25    31 
Module (mm) 2.7796
Pressure angle (deg) 22.21
Helix angle (deg) 28.9
Operating center distance (mm) 88.9
Outside diameter (mm) 
Root diameter (mm) 
Face width (mm) 
Standard pitch diameter, SPD (mm) 
Transverse tooth thickness at SPD (mm)  
Profile, face, total contact ratio 1.37 / 1.76 / 3.13 

85.293                           104.343
71.399                           90.449
31.750                              31.750
79.375                              98.425

  4.888                                4.888

Figure 1—Schematic of Gears in Mesh.
�������������������������������������
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reduction in the peak root and contact 
stresses, and will shift the peak stresses 
from the edge of the tooth to the center.

However, it was also shown that 
while excessive crowning can certainly 
shift the peak contact stress closer to the 
center of the tooth, it will also result in an 
increase in the peak contact stress due to 
the concentration of load in the center of 
the crown region. These investigators, 
however, seldom mentioned the effects 
of crowning on gear noise excitation. 

Numerous investigators have de-
veloped schemes for creating optimum 
modifi cations for helical gears, most 
of them based on the minimization of 
transmission error. Several researchers 
(Refs. 28–32) have developed methods 
for simultaneously studying the profi le 
and lead modifi cations of helical gears. 
Umezawa’s (Ref. 30) performance 
diagram that allows the study of many 
variables is similar to what is done in 
this study, but his emphasis was much 
more related to the best gear geometries 
to minimize dynamics.

Finally, it has been shown that it is 
possible to obtain a zero-transmission-
error surface topography for any gear 
pair (Ref. 33). Constraints are that the 
method will work at only one load, and 
it requires that the load distribution be 
defi ned beforehand. In addition, the 
modifi cations that result have peculiar 
shapes that would be diffi cult to 
manufacture.

Load Distribution 
Analysis Procedure

When considering topographical 
modifi cations and misalignment ef-
fects on the performance of gearing, 
it is necessary to have a computation 
procedure that determines the load 
distribution along the lines of action of 
the gears. In this paper, the basis of the 
load distribution analysis comes from 
the research of Conry and Seireg (Ref. 
34). However, similar approaches have 
been used by a number of investigators 
(Refs. 35–37). The work of Conry 
and Seireg has led to the creation of 
a computer program called the Load 
Distribution Program (Ref. 38) at the 
GearLab at The Ohio State University. 
Unlike general purpose, fi nite element 

approaches that are often used for this 
type of analysis, the approach used 
here is—computationally—extremely 
fast, allowing the performance of 
numerous simulations in a short time. 
Microgeometry modifi cations can be 
applied to the load distribution solver 
by treating them as the initial separation 
of the gears in mesh. A brief discussion 
of the bases of this program is provided 
in an annex at the back of this paper.

Outline of Procedure of 
Topographical Modifi cations

The following is an outline of the 
graphical procedure that is used to come 
up with optimal modifi cations. This 
procedure essentially allows the user to 
observe the effects of any of a number 
of response variables, such as root and 
contact stresses; noise excitations such 
as transmission error and sum-of-forces; 
and tribology properties such as surface 
temperature and fi lm thickness. Sum-of-
forces is the sum of the fi rst harmonic of 
transmission error, shuttling force and 
friction force (Ref. 39). The effect of 
any of these variables may be viewed as 
a function of torque in a number of ways. 
The designer now has the opportunity to 
select the modifi cation that can provide 
adequate noise response over a broad 
range of loads while at the same time 
satisfying load distribution, contact 
stress and bending stresses requirements 
at the higher loads. The fi nal process 
of the evaluation is to perform a 
manufacturing sensitivity analysis to 
check the design’s sensitivity to random 
errors in manufacturing and assembly, 
such as housing misalignment, lead and 
profi le errors.

1. Select two design variables and 
their ranges. Possibilities include profi le 
crown, profi le slope, tip relief, lead 
crown, misalignment, shaft defl ection 
and bias modifi cation.

2. Select evaluation torques and run 
the load distribution program.

3. Select design evaluation metrics 
(transmission error, sum-of-forces, 
contact stress, bending stresses, surface 
temperature and fi lm thickness).

4. Create a 2D parameter map, 
and move the cursor around on the 
appropriate evaluation metrics map at 

the selected torque until the user achieves 
a desirable torque response for that 
pair of variables. One may repeat this 
selection to compare the performance of 
various combinations of these variables. 
At each selection, a graph versus torque 
will be made for that variable and each 
selection is superimposed on the same 
graph. One may look at other design 
metrics and then select the composite 
“best” design or designs.

5. With the chosen values of the 
design variables, select two additional 
design variables and repeat the above 
procedure. One may need to iterate on 
the original variables upon completion 
of initial evaluations, but generally, 
iteration is not required.

6. Perform robustness analysis of 
the selected designs.

Procedure Example
The procedure is quite fl exible in the 

order in which variables are analyzed 
and in the number of variables that 
are considered. Therefore, an example 
of only one procedural possibility is 
presented. Usually, it was found that the 
most important variables should be dealt 
with in the early steps. One approach 
to rank ordering the importance of the 
design variables is with a Taguchi-type, 
factorial design analysis (Ref. 40).

 In the example that is shown 
below, a helical gear pair that was 
designed and tested by NASA (Ref. 41) 
will be optimized to minimize noise 
excitations at a range of pinion torques 
between 100 and 250 Nm (mean value 
is 175 Nm). The rated design torque for 
these gears is roughly 400 Nm. Figure 
1 shows a transverse plane schematic 
of the gears in mesh. Table 1 presents 
a summary of the geometry of this gear 
pair.

Selection of lead crown to 
compensate for misalignment. There 
are essentially three types of decisions 
that are made regarding the selection of 
lead crown, including: 

1. Use none; this may be done for 
narrow face widths or when extremely 
accurate manufacturing methods are 
used.

2. Use company-specifi ed standards 
that are based on company experience.

44
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Figure 2: Contact Stress at 400Nm (No Misalignment) 
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Figure 3: Contact Stress at 400Nm (With Misalignment) 
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Figure 2—Contact Stress at 400 Nm (No Misalignment).

Figure 3—Contact Stress at 400 Nm (With Misalignment).

Figure 4—Contact Stress at 400 Nm (5.07 µm Lead Crown and 15.23 µm Misalignment).

3. Establish the amount of peak 
misalignment and perform a load 
distribution analysis to establish a level 
of crown that shifts the peak load from 
the tooth edge. Usually this evaluation is 
done at the design load since the goal is 
to control the root and contact stresses.

Here, the latter situation will be 
demonstrated. One method is to use an 
AGMA-quality number as a reference. 
For example, AGMA A8 quality will be 
assumed to establish the manufacturing 
misalignment. This number will be 
doubled in order to account for the 
misalignment due to the housing, giving 
a peak misalignment of 15 µm across the 
face width of the gear set. Because of 
the relatively narrow face width of the 
gear pair, circular lead crowning will 
be applied so that the contact stresses 
and root stresses do not peak at the edge 
of the gear. Figure 2 shows the typical 
contact stress without any misalignment 
(peak at 1,225 MPa). Figure 3 shows 
the contact stress of the misaligned part 
(peak at 1,600 MPa). Figure 4 shows 
the contact stress of the misaligned part 
with 5 µm of lead crown (peak at 1,350 
MPa). One can see that for this 5 µm 
lead crown, the contact stresses at the 
edge are avoided. In each case, a sharp 
profi le tip modifi cation is applied so 
that the high stress at the corner of the 
tip and root can be reduced or ignored. 
Table 2 shows contact stress and bending 
stresses for different misalignment and 
lead crown.

Another method is to use the 2D 
parameter maps of contact stress and 
bending stress for lead crown versus 
misalignment, as shown in Figure 5. 
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Table 2: Summary of Contact and Bending Stress at the 
Design Torque for Several Misalignment and Lead Crown 

Misalignment    Lead Crown  Stresses (MPa) 

(µm)                  (µm)               Contact  GEAR1    GEAR2  

0                         0                   

15                        0                    

15                        5                     

0                         5                       

1225                230                  234

1600                348                  306

1350                310                  267

1250                247                  252

Figure 5—Interaction of Misalignment and Lead Crown at Design Torque (400 N-m).
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Figure 5:  Interaction of Misalignment and Lead Crown at 
Design Torque (400 N-m) 
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Figure 5:  Interaction of Misalignment and Lead Crown at 
Design Torque (400 N-m) 
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This method could be used to establish 
the appropriate lead crown needed at 
known misalignment values. Using this 
method, it would seem like the best lead 
crown would be about 7 µm for contact 
stress and about 10 µm for bending 
stress.

 In the next stage of the analysis, 
the interactions between lead crown 
and profi le crown will be performed for 
perfectly aligned teeth.

Profi le crown and lead crown 
interactions. Experience has shown that 
circular crown provides nearly optimal 
modifi cation for the minimization of 
transmission error of helical gears. 
Beside that, profi le crown and lead 
crown are the two most important 
variables in minimizing transmission 
error. Thus, it is logical that they are 
the fi rst variables to be considered when 
minimizing transmission error.

In this case, standard parameter 
maps were generated for lead crown 
and profi le crown amplitudes from 0–50 
µm.

Maps of peak-to-peak transmission 
error for six torque levels are shown in 
Figure 6. One may traverse any of the 
parameter maps with a mouse cursor 
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Figure 6: Peak-to-Peak Transmission Error for Profile Crown and Lead Crown Modification 
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Figure 6—Peak-to-Peak Transmission Error for Profile Crown and Lead Crown Modification.

and by clicking it, one may select any 
combination of profi le and lead crowns. 
Then one can plot any of a large number 
of gear design metrics (transmission 
error, sum-of-forces, contact stress, 
bending stress, etc.) versus torque for 
that combination of crowns. Each time 
a new combination is clicked, a new set 
of torque plots will be superimposed on 
the plots of design metrics.

One example—Figure 7—shows 
such a set of plots with the letters A, 
B, C, D and E being the selected pairs. 
From the peak-to-peak transmission 
error versus torque plots, we see that 
each of the crowning pairs gives a 
minimum transmission error at a 
different torque. The second noise 
metric—sum-of-forces—is less clear 
with regard to the minimum values; 
but if the procedure is repeated using 
the sum-of-forces parameter map, one 
might have found better minimum 
values for this variable.

The remaining plots show how the 
other design metrics respond to the 
increasing profi le and lead crowning. 
Usually, as we increase crowning, 
stresses go up since loads are being 
concentrated more in the center region 

of the tooth-meshing zone.
Since the center of the noise torque 

region is at 175 Nm, we will try to 
fi nd the profi le crown and lead crown 
that would minimize the peak-to-peak 
transmission error at this torque and its 
surrounding torques. Figure 8 shows the 
profi le crown and lead crown (AB, AC, 
AD and AE) that are used for the next 
runs that are used to select the second-
order tooth modifi cations.

Profi le slope and lead slope 
interactions. The next step is to use the 
selected cases from profi le crown and 
lead crown (AB, AC, AD and AE) and 
evaluate the interaction of profi le slope 
and lead slope from –25 to 25 µm.

Figure 9 shows the peak-to-peak 
transmission error for case AE. At one 
torque, changing the profi le slope and 
lead slope interaction may improve the 
design matrix, while the reverse may 
be true at other torque. The behavior of 
one torque might be different at another 
torque. For example, at 50 Nm, one 
could see that for –10 to 10 µm lead 
slope, one could select a large range 
of profi le slope. However, at 400 Nm 
torque value, increasing lead slope and 
increasing profi le slope are required to 
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Figure 7—Interaction of Selected Profile Crown and Lead Crown to Several Gear Design Metrics.
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have low peak-to-peak transmission 
error. The user could move around the 
mouse cursor to fi nd the relationship of 
profi le slope and lead slope. Here cases 
AE0, AE1, AE2, AE3 and AE4 will be 
chosen.

Although not shown here, a similar 
procedure is used for the other cases 
(AB, AC and AD). Thus, the selected 

designs would have their own profi le 
crown, lead crown, profi le slope and 
lead slope. By and large, the profi le 
slope and lead slope modifi cations do 
not have much effect on the transmission 
error results, but in a couple of instances, 
some improvements were observed. It 
is interesting to note that the maximum 
transmission error across the entire 

torque region is about 1.25 µm. To 
reduce the next interaction study (bias 
modifi cations), one or two of each 
main case are used, which is shown in 
Figure 10.

There are a total of seven selected 
designs—AB0, AC0, AC1, AD0, AD2, 
AE0 and AE2.

Bias modifi cation interactions. Bias 
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Figure 8—Several Gear Design Metrics Results using Selected Profile Crown and Lead Crown Modifications.

modifi cations (twist in the tooth shape) 
from –7.5 to 7.5 µm are used for the next 
procedure. “Bias out” modifi cations 
remove more material from the entering 
and leaving regions of contact, and 
“bias-in” modifi cations remove material 
from the opposite corners of the teeth. 
Table 3 shows the bias that was added 
to the earlier modifi cations. Figure 11 
shows the schematic on applying the 

bias modifi cation in the load distribution 
program.

Figure 12 shows the effect of bias 
modifi cation of several design metrics 
for case AE0. Here, adding bias-in 
modifi cation seems to improve the peak-
to-peak transmission error and sum-of-
forces, and at the same time it does not 
increase the contact stress from the no-
bias case. For this particular case, –5 µm 

(bias-in, case AE02), seems to be the 
best selection. The same procedure is 
done (not shown here) for all other cases 
and the bias modifi cations are selected 
that optimize the design metrics.

Figure 13 shows the comparison 
of these selected modifi cations. Cases 
AC03 and AD02 seem to be the 
better modifi cation, when compared 
to other cases from the peak-to-peak 
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Figure 9—Peak-to-Peak Transmission Error for Varying Profile Slope and Lead Slope with a Fixed 7.5 µm Profile Crown and 7.5 µm Lead Crown (Case 
AE).
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transmission error point of view at noise 
torque ranges. However, cases AB02 and 
AE02 seem to be the better modifi cation 
compared to other cases from the sum-
of-forces point of view. Case AC03 
seems to be the better modifi cation to 
the other cases from a contact stress 
point of view. Bending stresses show 
similar results as the contact stress 
(not shown here). Figure 14 shows the 

baseline modifi cation for each selected 
modifi cation. Thus, the gear designers 
would need to compromise between the 
noise and stresses for the modifi cation to 
be used as a baseline. Next step would be 
to analyze which of these modifi cations 
are less sensitive to manufacturing error 
(robustness analysis).

Robustness analysis. Robustness 
analysis is a Monte Carlo-type simulation 

(Ref. 42) that applies randomly selected 
errors to profi le slope, profi le curvature, 
lead slope (includes misalignment), lead 
curvature and bias modifi cations. In this 
analysis, the standard deviation of each 
variable is created from the AGMA 
A8 accuracy specifi cations by which 
100 manufacturing errors are selected 
randomly from the normal distributions 
for the gear. The distributions of errors 
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Figure 12—Effect of Bias Modifications (-7.5 to 7.5  µm) to Case AE (7.5 
µm Profile Crown, 7.5 µm Lead Crown, 0.0 µm Profile Slope, and 0 µm 
Lead Slope.)
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Table 3: 
Bias Modification Information 
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Figure 13—Summary Results of Selected Design.
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Figure 14—Total Modification For Selected Case.
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Figure 16—Robustness Analysis (Average and Aver+3 Stvd) for Peak-to-
Peak Transmission Error.

Figure 17—Robustness Analysis (Average and Aver+3 Stvd) for Sum-of-
Forces.

Figure 18—Robustness Analysis (Average and Aver+3 Stvd) for Contact 
Stress.
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Figure 19—Robustness Analysis (Average and Aver+3 Stvd) for GEAR1 
Bending Stress.
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6. Designs that are best for the 
perfect gear set are usually also the most 
robust gear designs.

In the future, there is a desire to 
apply these techniques to a broader 
range of gear geometries to see if the 
above conclusion can be extended to a 
broader range of gear geometries.
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Annex 
Formulation of the Load Dis-

tribution Calculation Procedure
The formulation of the solution of 

the load distribution (Ref. 1) in gears 
is equivalent to the formulation of the 
solution of the generalized, elastic 
contact problem. The discussion that 
follows is a condensation of the work 
of Conry and Seireg (Ref. 2) pertaining 
to elastic bodies in contact. Given 
the compliance of each point in the 
contact zone—the initial separations (or 
approaches) under zero-load  and the 
applied load—the load distribution and 
the overall system rigid body rotation 
may be obtained using a modifi ed, 
Simplex-type algorithm.

All elastic deformations and forces 
are assumed to be acting along the line 
of action in the transverse plane. For the 
gear teeth to be in contact at any point, 
the sum of the elastic deformations and 
initial separations must be equal to the 
rigid body displacement of the point 
with respect to the reference line. To 
determine the position of contact, the 
gear teeth are taken to be of perfect, 
involute form. Any tooth surface errors 
are interpreted as initial separations or 
approaches.

Two criteria are proposed for the 
mathematical formulation of the solution 
of the contact problem. The condition 
of compatibility of deformation outlines 
the condition for which points may 
come into contact. The condition of 
equilibrium assures that the sum of 
torques acting on the system are zero.

For any point, k, in the contact zone, 
the total sum of elastic deformations and 
initial separations must be greater than, 
or equal to, the rigid body approach 
along the line of action. This condition 
may be written as:

W1k
 +W2k

 + e
k
 ≥ R

b
θ (1)

The sum of all torques acting on 
a gear body must be zero. The sum 
of moments about the line of action 
must be equal, but opposite in sign, to 
the applied torque. This condition is 
represented as:

Σ (F
k
 x R

b
 ) + T = 0   (2)
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Nomenclature
W1k W2k total elastic deformation of point k on body 1 and body 2

ek initial separation at point “k” between body 1 and body 2

Rb base radius

Fk  the discrete force acting at point “k”

T the applied torque

Yk  slack variable

[S] matrix of the infl uence coeffi cient

[F] vector of forces

[I ] [I t]  vector of ones; the transpose of [I ]

[Y] vector of slack variable

[e]  vector of initial separation

The compatibility conditions as 
defi ned by the inequality equation (1) 
may be transformed into an equation of 
equality through the introduction of a 
slack variable, Yk. Equation 1 may now 
be written as

W1k
 + W2k

 + e
k
 – R

b
θ – Y

k
=0  (3)

Consequently, if Yk > 0, then the 
two bodies are not in contact at point k 
and Fk = 0. If Yk = 0, then contact exists 
and Fk ≥ 0. Thus, the solution to the 
load distribution problem may be stated 
as follows
− [S][F]+ R

b
θ [i] + [I ][Y]− [e] = 0    (4)

[I t] + [F]R
b
 + T = 0   (5)

A modifi ed Simplex type algorithm 
is then used to solve for the load 
distribution.

The major assumptions that are used 
in the load distribution calculation are:

1.  All contact is along the line of 
action. This assumption does not allow 
so called “corner” contact that occurs 
when the modifi cations are not suffi cient 
to compensate for tooth defl ections as 
teeth enter and leave contact. There is 
a corner contact option that does allow 
this to be included for both spur and 
helical gearing (Ref. 3).

2.  The edges of helical gear teeth 
are modeled as being perpendicular to 
the normal plane.

3.  Rims and webs are assumed to 
be solid.

4.  Tooth bending and shear de-
fl ections are computed using a Rayleigh-
Ritz solution of a tapered plate model 

(Ref. 4). 
5.  Additional tooth defl ection com-

ponents include Hertzian defl ections 
(Ref. 5) and defl ection of the tooth base 
(Ref. 6). 
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