Helical Gear Mathematics Formulas and Examples

BASICS

Part II

Earle Buckingham Eliot K. Buckingham Buckingham Associates, Inc. Springfield, VT

The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.

AUTHOR:

R₂ = Pitch Radius of Second Gear

R_{b2} = Base Radius of Second Gear

Ro2 = Outside Radius of Second Gear

ELIOT K. BUCKINGHAM is president of Buckingham Associates, Inc., a consulting firm working in the areas of design, application and manufacture of gears for any type of drive. Mr. Buckingham earned his B.S. from Massachusetts Institute of Technology and his M.S. from the University of New Mexico. He is the author of Tables for Recess Action Gears and numerous technical papers, as well as the revised edition of The Manual of Gear Design by Earle Buckingham. He is a member of ASME and a Registered Professional Engineer in the State of Vermont.

Given the proportions of a pair of helical gears in the plane of rotation, to determine the contact ratio:

When,

R1 = Pitch Radius of First Gear Ro1 = Outside Radius of First Gear

- R_{b1} = Base Radius of First Gear
 - ϕ = Pressure Angle at R₁ and R₂

p = Circular Pitch

- C = Center Distance
- mp = Contact Ratio

Then,

$$R_{b1} = R_1 \cos \phi$$
 $R_{b2} = R_2 \cos \phi$

$$m_{p} = \frac{\sqrt{R_{o1}^{2} - R_{b1}^{2} + \sqrt{R_{o2}^{2} - R_{b2}^{2} - C SIN \phi}}{p COS \phi}$$

Example:

F

m

$$D_{p} = \frac{\sqrt{(1.125)^{2} - (.93969)^{2} + \sqrt{(2.375)^{2} - (2.11430)^{2} - 3.250 \times .34202}}{.3927 \times .93969} = 1.59$$

(Continued on page 42)

CSEPEL GEAR GRINDERS High Production – Accuracy – Reliability

MODEL FKP 326-10 (On Display IMTS '88)

D. P. RANGE 48-4 FASSLER D.S.A. DRESSING HELIX ANGLE ± 45° PROFILE MODIFICATIONS WHEEL DIA. 17.7" ALLEN BRADLEY PLC	• MAX. DIA.	12.6″	AUTOMATIC GRINDING CYCLES	
HELIX ANGLE ± 45° PROFILE MODIFICATIONS WHEEL DIA. 17.7" ALLEN BRADLEY PLC	• D. P. RANGE	48-4	• FASSLER D.S.A. DRESSING	
WHEEL DIA. 17.7" ALLEN BRADLEY PLC	HELIX ANGLE	± 45°	PROFILE MODIFICATIONS	
	• WHEEL DIA.	17.7″	ALLEN BRADLEY PLC	

Installations Throughout The U.S.

Exclusive Importer For North America

PEELCO MACHINE TOOLS, INC.

805 Albion Avenue • Schaumburg, IL 60193-4522 (312) 351-2772

SALES FAX: (312) 351-6930

SERVICE

See Us At Booth #6192 – Technoimpex

IMTS '88

CIRCLE A-9 ON READER REPLY CARD

Helical Gear Mathematics (Continued from page 40)

Given the arc tooth thickness and pressure angle in the plane of rotation of an internal helical gear, to determine its tooth thickness at any other radius:

When,

r1 = Given Radius

- r₂ = Radius Where Tooth Thickness is to be Determined ϕ_1 = Pressure Angle at r₁
- ϕ_2 = Pressure Angle at r_2 T1 = Arc Tooth Thickness at r2 $T_2 = Arc$ Tooth Thickness at r_2

Then,

 $\cos \phi_2 = \frac{r_1 \cos \phi_1}{r_2}$

$$T_2 = 2r_2 \left[\frac{T_1}{2r_1} - INV \phi_1 + INV \phi_2 \right]$$

Example: $r_1 = 5.000 \quad \phi = 20^{\circ} \quad T_1 = .2618 \quad r_2 = 5.100$

 $\cos \phi_1 = .93969$ INV $\phi_1 = .014904$

 $\cos \phi_2 = \frac{5.000 \times .93969}{5.100} = .92126$

 $\phi_2 = 22.889^\circ$ INV $\phi_2 = .022702$

$$T_2 = (2 \times 5.100) \left[\frac{.2618}{2 \times 5.000} - .014904 + .022702 \right] = .34657$$

Given the arc tooth thickness and pressure angle in plane of rotation of mating internal helical gear and pinion at given radii, to determine the center distance at which they will mesh tightly:

When,	r ₁ = Given Radius of Pinion	$N_2 =$ Number of Teeth in Gear
	r ₂ = Given Radius of Internal Gear	ϕ_1 = Pressure Angle at r_1 and r_2
	$T_1 = Arc$ Tooth Thickness at r_1	ϕ_2 = Pressure Angle at Meshing Position
	$T_2 = Arc$ Tooth Thickness at r_2	C_1 = Center Distance for ϕ_1
	N_1 = Number of Teeth in Pinion	C_2 = Center Distance for ϕ_2
Then,	INV $\phi_2 = \frac{2 \pi r_1 - N(T_1 + T_2)}{2r_1 (N_2 - N_1)} + INV \phi_1$	$C = r_2 - r_1 \qquad C_2 = \frac{C_1 \cos \phi_1}{\cos \phi_2}$
Example:	$r_1 = 1.500$ $N_1 = 18$ $T_1 = .2$	2618 $\phi_1 = 20^\circ$ COS $\phi_1 = .93969$
	$r_2 = 5.000$ $N_2 = 60$ $T_2 = .2$	$1NV \phi_1 = .014904$
	2π (1.500) - 18(.2618 + .2500)	014004 016590
	$(2 \times 1.500) (60 - 18)$	+ .014904 = .016589
	$\phi_2 = 20.702^\circ$ COS $\phi_2 = .93543$	and and
		0 500 00000

 $C_1 = 5.000 - 1.500 = 3.500$ $C_2 = \frac{3.500 \times .93969}{.93543}$ = 3.5159

(Continued on page 44)

Booth #8102 McCormick Place — West

SU AMERICA is pleased to announce the manufacture of gear shaving cutters, chamfer and deburr tools and the service of the entire Samputensili product line at its facility located at 8775 Capital Avenue Oak Park, MI 48237 Phone No. 313-548-7177 Fax No. 313-548-4443

SU product line includes: Gear chamfering and deburring machines CNC Shaving cutter grinding machines CNC thread grinding machines Roll gear testing machines Gear and worm checking equipments

Shaving cutters
Shaper cutters
Solid and inserted blade hobs
Chamfering and deburring tools
Master gears

AMERICA INC.

Helical Gear Mathematics . . .

(Continued from page 42)

Given the tooth proportions of a helical pinion and Fellows cutter for an internal gear drive and the center distance, to determine the shaping data for the internal helical gear:

When, C_1 = Center Distance of Operation R_i = Inside Radius of Internal Gear ϕ_1 = Pressure Angle of Cutter in Plane of Rotation R_{r2} = Root Radius of Internal Gear R_{b1} = Base Radius of Pinion R_3 = Pitch Radius of Cutter Where Pressure	Angle is <i>q</i>			
ϕ_1 = Pressure Angle of Cutter in Plane of Rotation R_{r2} = Root Radius of Internal Gear R_{b1} = Base Radius of Pinion R_3 = Pitch Radius of Cutter Where Pressure	Angle is ϕ			
R _{b1} = Base Radius of Pinion R ₃ = Pitch Radius of Cutter Where Pressure	Angle is ϕ			
R_1 = Pitch Radius of Pinion Where Pressure Angle is ϕ_1 C_3 = Center Distance for Cutting				
T ₁ = Arc Tooth Thickness at R ₁ R _{b3} = Base Radius of Cutter				
R_{o1} = Outside Radius of Pinion T_3 = Arc Tooth Thickness at R_3				
R_{r1} = Root Radius of Pinion ϕ_3 = Generating Pressure Angle in Plane of	Rotation			
ϕ_2 = Pressure Angle of Operation in Plane of Rotation R_{o3} = Outside Radius of Cutter				
R_{b2} = Base Radius of Internal Gear p = Circular Pitch at R_3				
R_2 = Pitch Radius of Internal Gear Where Pressure Angle is ϕ_1 C = Clearance				
$T_2 = Arc$ Tooth Thickness at R_2				
Then.				
$R_{b1} = R_1 \cos \phi_1 \qquad R_{b2} = R_2 \cos \phi_1 \qquad R_{b3} = R_3 \cos \phi_1$				
$\frac{R_{b2}-R_{b1}}{R_{b1}}$				
$COS \phi_2 = C_1$ Note: C_1 must be greater than $(R_{b2} - R_{b1})$				
$T_2 = p - T_1 - 2 (R_2 - R_1) (INV \phi_2 - INV \phi_1)$ $R_i = C_1 + R_{r1} + C$				
$p - (T_2 + T_3)$ $R_{b2} - R_{b3}$				
$INV \phi_3 = 12 (R_2 - R_3) + INV \phi_1$ $C_3 = 100 COS \phi_3$				
$R_{r2} = C_3 + R_{o3}$ Maximum $R_{o1} = R_{r2} - C_1 - C_1$				
Example: $\phi_1 = 20^\circ$ R ₁ = .4375 R ₂ = 2.1875 R ₃ = 1.750				
8 DP C ₁ = 1.750 $T_1 = .2000$ p = .3927 $R_{r1} = .3930$				
$C = .0250$ $T_3 = .19635$ $R_{o3} = 1.875$ $R_{o1} = .6180$				
$R_{b1} = .4375 \times .93969 = .41111$ $R_{b2} = 2.1875 \times .93969 = 2.05557$ $R_{b3} = 1.75 \times .93969 = 1.64446$				
2.0555741111				
$\cos \phi_2 = \frac{1.750}{1.750} = .93969 \phi_2 = 20^\circ \text{INV } \phi_2 = .014904$				
$T_2 = .39272000 - 2 (2.18754375) (.014904014904) = .1927$				
3927 - (1927 + 19635)				
$R_1 = 1.750 + .393 + .025 = 2.1680$ INV $\phi_3 = \frac{.0027 - (.1027 + .13000)}{2(2.1875 - 1.750)} + .014904 = .019075$				
$\phi_3 = 21.650^\circ$ COS $\phi_3 = .92945$				
2.05557 - 1.64446				
$C_3 = \frac{1}{.92945} = .4423$ $R_{r2} = .4423 + 1.875 = 2.3173$				
Maximum $R_{o1} = 2.3173 - 1.750025 = .5423$				
Therefore R , being greater than maximum it must be reduced to 510				
(Continued on	page 48)			

TECHNICAL CALENDAR

AUGUST 10-12. Ohio State University, Gear Noise Course. Material covered includes noise measurement and analysis, causes, reduction techniques, modeling and modal analysis of gear boxes. For further information, contact: Mr. Richard D. Frasher, College of Engineering, OSU, 2070 Neil Ave., Columbus, OH 43210. (614) 292-8143.

SEPTEMBER 7-15. International Machine Tool Show & Technical Conference, McCormick Place, Chicago, IL. World's largest machine tool show. Technical conference with 48 sessions and over 200 papers on a variety of manufacturing technology subjects. Contact IMTBA, 7901 Westpark Drive, McLean, VA 22102-4269. See also page 8.

SEPTEMBER 27-29. American Society for Metals 11th Annual Heat Treating Conference, McCormick Place, Chicago, IL. Presentations on subjects including heat treating, statistical process control, new energy applications, quenching and cooling improvements. For further information, contact: ASM International, Metals Park,

OH 44073. (216) 338-5151.

NOVEMBER 5-10. International Conference on Gearing, Zhengzhou, China. ASME-GRI and several international gear organizations are sponsoring this meeting. For more information contact: Inter—Gear '88 Secretariat, Zhengzhou Research Institute of Mechanical Engineering, Zhongyuan Rd, Zhengzhou, Henan, China. Tel: 47102. Cable 3000. Telex 46033 HSTEC CN.

NOVEMBER 8-10. American Society for Metals Near Net Shape Manufacturing Conference, Hyatt Regency, Columbus, OH. Program will cover precision casting, powder metallurgy, design of dies and molds, forging technology and inspection of precision parts. For further information contact: Technical Department Marketing, ASM International, Metals Park, OH 44073.

CALL FOR PAPERS — Tennessee Technological University for its 1st Internat'l Applied Mechanical Systems Design Conference, March 19-22, **1989, Nashville, TN.** Papers are invited on general mechanical systems subjects including strength, fatigue life, kinematics, vibration, robotics. CAD/CAM, and tribology. Deadline for first drafts is Oct. 1, 1988. For further information, contact. Dr. Cemil Bagci, Dept. of Mech. Eng., TTU, Cookeville, TN 38505. (615) 372-3265.

CALL FOR PAPERS for ASME 5th Annual Power Transmission & Gearing Conference, April 25-27, 1989, Chicago, IL. Papers are invited on emerging technologies for gears, couplings, belts, chains and other power transmission devices — gear geometry, noise, manufacture, inspection, scoring, lubrication, materials, applications, efficiency, dynamics. For more information, contact Donald Borden, P.O. Box 502, Elm Grove, WI 53122.

CHANGE OF DATE: SME's 1988 Gear Processing & Manufacturing Clinic will be held Oct. 25-27 in Indianapolis, IN. For more information, contact Dominic Ahearn, SME, One SME Drive, P.O. Box 930, Dearborn, MI 48121. (313) 271-1500 X384.

Helical Gear Mathematics . . .

(Continued from page 44)

Given the p	roportions of a helical gear and rack, to determine the contact ratio between a helical gear and rack:				
When,	R = Pitch Radius of Gear ϕ = Pressure Angle of Rack in Plane of Rotation				
	R _o = Outside Radius of Gear a = Addendum of Rack				
	R_b = Base Radius of Gear m_p = Contact Ratio				
	p = Circular Pitch of Rack in Plane of Rotation				
Then,	$m_{p} = \frac{a + SIN \phi (\sqrt{R_{o}^{2} - R_{b}^{2}} + R SIN \phi)}{p SIN \phi COS \phi}$				
Example:	R = 2.250 R _o = 2.375 R _b = 2.11430 p = .3927 a = .125 SIN ϕ = .34202 COS ϕ = .93969 ϕ = 20°				
	$m_{p} = \frac{.125 + .34202 (\sqrt{(2.375)^{2} - (2.11430)^{2}} - 2.250 \times .34202)}{.3927 \times .34202 \times .93969} = 1.84$				