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Introduction
In today’s gear industry, designers 

typically utilize rating methods of gear 
load capacity based on standards or the 
customary design rules. In these meth-
ods, nominal quantities are calculated 
in order to characterize the stress field 
in the gear. These nominal quantities 
are compared with limit values derived 
from tests using gears as specimens.

In the case of tooth bending 
strength, a cantilever-beam model is 
generally used to compute the bend-
ing stress. With this approach, Lewis 
in 1892 first calculated the tooth root 
stress of spur gear teeth (W. Lewis, 
“Investigation of the Strength of Gear 
Teeth,” Proceedings of Engineers 
Club, Philadelphia). This model is still 
the basis for standard calculation meth-
ods successfully used in gear design. 
However, the local stress state—the 
“true” stress—in the tooth root fillet 
may be different from the nominal val-
ues obtained by this method.

In truth, the calculation of the maxi-
mum tensile stress at the tooth root is a 
three-dimensional problem: The plane 
strain or plane stress model can be used 
without approximations only in the 
case of infinite, or infinitesimal, face 
width. In Reference 1, starting from the 
analytical solution of Jaramillo (Ref. 
2), Wellauer and Seireg introduced 
a study of the bending stress of gear 
teeth based on a cantilever-plate model. 
This method shows clearly that a three-
dimensional model must be used to 
evaluate the variation of the tooth root 
stress along the face width. Current 
numerical methods, FEM and BEM, 
for example, are available for the solu-
tion of the elasticity problem for com-
plex domains. Thus it is possible to 
calculate accurately the local strain and 
stress state in the tooth root, taking into 
account the real geometry of both gear 
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Management Summary
It is well known from the literature that the true bending stresses at 

the tooth root of spur gears are quite different from the nominal values 
that are utilized for the calculation of load capacity, either by standards or 
usual design rules.

No problems arise in using a load capacity rating when the simplified 
values are compared with the results of bending fatigue tests whose limits 
are calculated with the same schematic method.

But the “true” stress at the tooth root has different trends and values, 
and the designer must be aware of this difference, especially for light 
gears with narrow ribs and rims.

In this paper, an accurate FEM analysis has been done of the “true” 
stress at tooth root of spur gears in the function of the gear geometry. The 
obtained results confirm the importance of these differences. 

Table 1- Synthesis of the cases analyzed 
for the full-body and the thin-rimmed gear.

Full-Body Gears Thin-Rimmed Gears

Model Single Gear Gear Pair

Load Pinion Pinion

Body Gear Structure Full Rim Rim Supported by a Web

Geometric
Parameters

Module  m=4.5 mm
Face width b = 5, 10, 15, 20, 30
40, 50, 70, 100 mm
and Plane Strain Condition.

Module  m=4.5 mm
Face width  b=20 mm
Backup ratio r = 0.5 - 0.65 - 0.75r = 0.5 - 0.65 - 0.75r
Web ratio  w = 0.2 - 0.3 - 0.4w = 0.2 - 0.3 - 0.4w

Gear Data For Pinion

Normal Module mn

Number of Teeth z

Normal Pressure Angle αn

Tip Diameter da
Root Diameter dRdRd

Profi le Shift Coeffi cient x

Span Measurement W

Number of Teeth Spanned k

Operating Center Distance aw
Tool Geometry

Tool Normal Tooth Thickness Sn0

Tool Addendum ha0

Tool Addendum ρa0
Tool Protuberance δa0
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Figure 1—Geometric model and boundary 
conditions: Full-body gear.

Figure 2—Finite Element Model: Full-body gear.
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Figure 3—Maximum principal stress contour 
plot in the middle cross-section: Full-body gear 
with b = 20 mm.b = 20 mm.b

Figure 4—Maximum principal; stress contour 
plot in the side of the gear: Full-body gear with 
b = 20 mmb = 20 mmb

Figure 5—Maximum and intermediate princi-
pal stress distribution at the tooth root fillet in 
the middle cross-section: Full-body gear with 
b = 20 mm.b = 20 mm.b

Figure 6—Maximum and intermediate princi-
pal stress distribution at the tooth root fillet in 
the sides of the gear: Full-body gear with b = b = b
20 mm.

teeth and body (Refs. 3 and 4).
This work analyzes the stress field 

at the tooth root using a three-dimen-
sional, parametric, finite element solid 
model. Commonly used gear geome-
tries having full body and thin-rimmed 
body connected to the hub by a web are 
also analyzed. 

Full Body Gear
The methods that are commonly 

used for the calculation of gear-bending 
strength are based on a cantilever-beam 
model. The maximum tensile stress in 
the tooth root is therefore computed in 
a plane strain condition for an error-
free gear pair. The influence of the face 
width and the variation of the tooth 
root stress along the gear width is not 
taken into account.

This study examines the bending 
stress along the tooth width for a fixed 
geometry and for different values of 
face width (Table 1). To begin, the 
case of an error-free spur gear pair with 
full body was considered. In the FEM 
analyses, only half of the pinion was 
modeled, since loading conditions and 
geometry are symmetrical to the mid-
dle plane of the gear width (Fig. 1). 
The load, applied at the highest point 
of single tooth contact (HPSTC), was 
modeled as a linear force uniformly 
distributed along the face width and 
perpendicular to the tooth surface. The 
hub of the pinion was fixed (Fig. 1). 
An example of the FE models used in 
the analyses is shown in Figure 2.  

Even with uniform load along the 
face width, numerical results show that 
there are areas with different stress lev-
els at the tooth root (Figs. 3 and 4). 
For values of the ratio b/m between the 
face width and the module commonly 
used in practical gear design, the stress 
level is higher in the middle of the gear 
width than in the side areas. In the cen-
ter cross-section, the magnitude of the 
maximum principal stress is higher 
than on the sides of the gear, and an 
intermediate principal stress is present. 
In addition, the location of the highest 
value of the maximum principal stress 
in each cross-section changes along the 
face width, but the range is small. The 
location varies from 30° in the middle 

cross-section to 34° on the sides (Figs. 
5 and 6) if the position in the tooth 
root fillet is described by the angle 
ψ, the angle between the symmetry 
line of the tooth and the tangent to the 
fillet curve.  
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Figure 8—Bending stress distribution along the face width for different b: Full-body gear (σF is the 
bending stress stress and σF

PS is the bending stress in plane strain condition).  
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Figure 9—Thin-rimmed gear geometry. Figure 10—Geometric model and boundary 
conditions: Thin-rimmed gear.

The highest value of the maximum 
principal stress in a cross-section—
herein named bending stress—may be 
used to characterize the stress levels 
along the face width. Figure 7 shows 
the bending stress as a function of the 
distance z from the middle plane for 
gears having different face width. Two 
types of distribution can be recognized, 
as shown in Figure 8. For a b/m ratio 
lower than nine, the maximum of the 
bending stress is in the middle sec-
tion and the minimum in the sides of 
the gear. The maximum is higher than 
the bending stress calculated in plane 
strain condition. For a b/m ratio higher 
than nine, the minimum bending stress 
is again in the sides of the gear, but 
the maximum is close to the sides, not 
in the center. In the middle cross-sec-
tion, the bending stress approaches the 
plane strain value for face width close 
to infinity.

Thin-Rimmed Gears
A common design goal for gears in 

some power transmissions (e.g., aero-
space transmissions) is reduced weight. 
To meet this goal, thin rims are often 
utilized. But rims that are too thin may 
adversely affect the bending stress. 
Several researchers have employed 
FEA for the purpose of assessing the 
influence of the rim thickness on the 
stress behavior in thin-rimmed gears. 
Yet most of these 2-D and 3-D analy-
ses do not consider a web structure of 
the gear body. It is therefore believed 
that these models cannot give an accu-
rate evaluation of the stress field at the 
tooth fillet of gears having a thin rim 
supported by a web.

A model of a spur gear pair is used 
here to evaluate the influence of both the 
rim and web thickness. In the geometri-
cal model, the gear bodies are mod-
eled as a thin rim supported by a web 
(Fig. 9). Nine different case studies are 
analyzed with all geometry parameters 
fixed, excepting the back-up ratio and 
the web thickness ratio (Table 1). The 
first, here referred to as r, is the ratio 
between the rim thickness S

R
 and the 

tooth height. The second, referred to as 
w, is the ratio between the web thick-
ness b

S
 and the face width b. 
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Figure 7—Bending stress distributions along the face width for full-body gears with b = 30 mm and b = 30 mm and b
b = 100 mm.b = 100 mm.b
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Figure 11—Contact pressure along the involute profile in the middle cross-section (z00) and in the z00) and in the z
sides of the gear (z10): Thin-rimmed gear with b=20 mm, w=0.3 and w=0.3 and w r=0.5, 0.65 and 0.75.r=0.5, 0.65 and 0.75.r

As opposed to the full-body gear 
case, the gear pair is modeled and the 
dry contact of the mating tooth surfaces 
is simulated by a numerical algorithm. 
The gear pair position is chosen to load 
the pinion tooth at the HPSTC, as in 
the full-body gear analyses. To impose 
kinematic and static boundary condi-
tions, the pinion hub is fixed and the 
torque applied to the wheel hub (Fig. 
10).

The contact pressure distributions 
obtained from the numerical simula-
tions were similar in all cases analyzed. 
The contact pressure was not uniformly 
distributed along the face width. In the 
middle section, the pressure distribu-
tion is close to the Hertzian distribution 
for the plane strain condition (Fig. 11). 
In the side sections, the contact pres-
sure distribution is again elliptical, but 
the maximum value is lower than in the 
middle section. This reduction occurs 
due to the free expansion of the mate-
rial on the sides of gear, contrary to 
the middle section. The ratio between 
the maximum contact pressure in the 
side and in the middle sections can be 
calculated according to Johnson (Ref. 
6) as p/p

H
 = (1–v2) = 0.91 (considering 

steel gears). This value is close to that 
obtained from the analysis p/p

H
 = 0.88 

(Fig. 11).
Considering the stress field at the 

tooth root, the results of the FEAs 
again show that the maximum bending 
stress is located in the central cross-
section, and the minimum in the sides 
of the gear. But the difference between 
these two values is larger than in the 
full-body gear case. Moreover, the 
shapes of the maximum principal stress 
contour lines are different in the two 
positions along the gear width (Figs. 
12 and 13). This is due to the differ-
ences between the stiffness of the cen-
tral area—supported by the rim and the 
web—and the stiffness of the end areas 
which are supported only by the rim. 
As a consequence, the locations of the 
highest value of the maximum prin-
cipal stress in the tooth fillet are also 
different in the two cross-sections; the 
location varies from 43° in the middle 
to 32° on the sides (Figs. 14 and 15).

Figure 12—Maximum principal stress contour 
plot in the middle cross-section: Thin-rimmed 
gear with b = 20 mm, b = 20 mm, b r = 0.65 and r = 0.65 and r w = 0.3.w = 0.3.w
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Figure 13—Maximum principal stress contour 
plot in the middle cross-section: Thin-rimmed 
gear with b = 20 mm, b = 20 mm, b r = 0.65 and r = 0.65 and r w = 0.3.w = 0.3.w

Figure 14—Maximum principal stress at the 
tooth root fillet in the middle cross-section: 
Thin-rimmed gear with b = 20 mm, b = 20 mm, b r = 0.65 and r = 0.65 and r
w = 0.3.w = 0.3.w

Figure 15—Maximum principal stress at the 
tooth root fillet in the middle cross-section: 
Thin-rimmed gear with b = 20 mm, b = 20 mm, b r = 0.65 and r = 0.65 and r
w = 0.3.w = 0.3.w
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Figure 16—Bending stress distributions along the face width for different r and r and r w: Thin-rimmed gear w: Thin-rimmed gear w
with b = 20 mm ( b = 20 mm ( b σF is the bending stress and F is the bending stress and F σF

PS is the bending stress in plane strain condition).
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In Figure 16, the bending stress is 
plotted as a function of the distance of 
the section from the middle plane for 
the nine case studies and for a full-body 
gear case. For back-up ratio equal to 
0.75,  the thin rim has a small influence 
on the bending stress, and the stress 
distribution is unaffected by web thick-
ness ratio. If the back-up ratio decreas-
es, the magnitude of the bending stress 
in the middle plane increases and the 
effect of the web thickness becomes 
clear—the increment of the bending 
stress becomes larger when the web 
thickness decreases (Fig. 16).
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Figure 17—Ratio between the maximum bending stress and the bending stress in plane strain con-
dition as function of the backup ratio for diffrent web thickness ratios.

AGMA and ISO 
Thin-Rim Coefficients

Both the ISO and AGMA standards 
(Refs. 7 and 8) introduce stress-mod-
ifying factors for the bending stress 
calculation where the rim thickness is 
not sufficient to provide full support 
of the tooth root. The AGMA and ISO 
rim thickness factors KB and YB have 
the same meaning and same values as a 
function of the back-up ratio.

According to the ISO standard, the 
rim thickness factor should be defined 
as the ratio of the nominal tooth root 
stress for a thin-rimmed gear and for 
a full-body gear with the same geom-
etry but without the back-up ratio. The 
magnitude of the rim thickness factor 
can  be derived from diagrams (Fig. 17) 
or calculated according to the ISO stan-
dard with this formula for an assigned 
backup ratio: YB = 1.6 ln (2.242 · h

t

/S
R
) per 0.5<S

R
/h

t
 < 1.2

The values of the YB factor calcu-
lated for r = 0.5, 0.65 and 0.75 are list-
ed in Table 2, while the ratio between 
bending stress for the full-body gear 
and the thin-rimmed gears investigated 
in this study are reported in Table 3. 
The differences between the values for 
a given r are large, but the effect of 
web is not taken into account in the 
YB factor. The values obtained have 
instead a good correlation with the 
results of numerical and experimental 
investigations described in Reference 
5, where the effect of both the thin rim 
and the web thickness are considered.

Conclusions
This paper presents the results of 

an investigation on the variation of the 
tooth root stress field along the face 
width for full-body and thin-rimmed 
gears. The results of parametric, 3-
D finite element analyses are used to 
characterize the influence of some sig-
nificant geometric parameters on the 
bending stress distribution.

For full-body gears, the influence of 
the face width was investigated, show-
ing areas with different stress levels 
along the tooth width. The results show 
that, for face width ratio close to practi-
cal gear design, most of the bending 
stress occurs in the center cross-section 
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Table 2–YB values as a function of the backup ratios analyzed in this study.

SR/hR/hR t r = 0.5r = 0.5r r = 0.65r = 0.65r r = 0.75r = 0.75r

YB 2.40 1.98 1.75

Table 3–Ratio between the bending stresses calculated for the thin-rimmed gear 
and in plane strain condition as a function of the backup ratio r = SR/ht and the 

web thickness ratio w = bS/b.

 σF/σF/σF F
PS r = 0.5r = 0.5r r = 0.65r = 0.65r r = 0.75r = 0.75r

w = 0.2w = 0.2w 1.24 1.12 1.09

w = 0.3w = 0.3w 1.21 1.21 1.09

w = 0.4w = 0.4w 1.20 1.11 1.09

and the magnitude is higher than in the 
plane strain condition. The location in 
the tooth root fillet of the highest value 
of the maximum principal stress chang-
es along the face width, but the values 
of the angle ψ are close to 30°.

For thin-rimmed gears, the influ-
ence of both rim and web thickness 
was investigated. The results show that 
for backup ratio values larger than 0.75, 
there is a very small influence on the 
tooth root stress, while the maximum 
fillet stress increases sharply as the 
backup ratio value is smaller than 0.75. 
Moreover, the more the web thickness 
is increased, the more the stress con-
centration factor decreases.
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Appendix
The numerical simulations were 

performed using ABAQUS version 6.5-
1 in the pre/post processing (ABAQUS/
CAE) and in the numerical analysis 
(ABAQUS/Standard). 

The material was considered homo-
geneous and isotropic with a linear 
elastic behavior. Small displacement 
hypothesis was assumed for the anal-
yses. In the full body gear analyses, 
hexahedral quadratic elements (3D) 
and bilinear quadrilateral (2D) ele-
ments fully integrated (ABAQUS codes 
C3D20 and CPE8 according to Ref. 9) 
were used for the domain discretization 
in the three- and two-dimensional mod-
els. In the thin-rimmed gears analyses, 
hexahedral linear elements (ABAQUS 
code C3D8I according to Ref. 9) were 
used for the mesh. These types of ele-
ments are suggested for the conver-
gence of the contact algorithm and the 
elements are enhanced by incompatible 
modes to improve their bending behav-
ior. The number of elements used was 
varied depending upon the particular 
gear width being considered.

In the analyses where the gear pair 
was simulated, the contact between 
the tooth surfaces was considered as a 
dry frictionless contact assuming small 
sliding between the surfaces. The con-
tact constraint was simulated by the 
LaGrange Multiplier Method (i.e. using 
the ABAQUS option “Hard contact”).
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