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Introduction
Bevel and hypoid gears are complex, three-

dimensional gearing systems with flank forms 
not easily described in conjunction with a 
mathematical function. As early as the 1970s, 
computer programs have existed to define 
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the flank surfaces of bevel and hypoid gears. 
The latest bevel and hypoid gear analysis pro-
grams employ a simulation of the manufac-
turing process based on a virtual bevel gear 
generator—i.e., a virtual basic machine. This 
basic machine provides the correct definition 
of the workpiece blank, the cutting tool and all 
the freedoms between work and tool of a uni-
versal bevel gear generator (Fig. 1). As such, 
the input data define not only the work and tool 
but also the geometric and kinematic relation-
ship during a pinion or a gear manufacturing 
process. The cutting tool represents one tooth 
of a generating gear while it rotates around 
the cutter head axis. The rotation of the cutter 
head center around the generating cradle axis 
represents the rotation of the generating gear, 
which is in mesh with the work gear. This in 
turn requires that the work gear rotates with the 
correct ratio between generating gear and work 
gear. The results of the manufacturing simula-
tion are the surfaces of pinion and gear teeth, 
described as the points and normal vectors of 
the surface grids. These surfaces are the basis 
of a number of analyses, such as tooth contact 
analysis (TCA), sliding and rolling velocity 
calculation and more.

The analysis results—like ease-off and 
tooth contact—are plotted within the projected 
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ring gear tooth boundaries. Figure  2 provides 
the graphical explanation of the projection 
plane. The tooth corner points are transferred 
into an axial plane. Each point on a flank sur-
face corresponds to a point on the projection 
plane. The projection plane is utilized in two- 
and three-dimensional graphics (as indicated, 
right) in order to ensure certain qualitative and 
quantitative properties are graphically visible. 
Those properties result from the interaction 
between a pinion flank and its mating gear 
flank. The analysis results—by definition—
are only shown in the gear projection plane. 
The orientation within the tooth is defined as 
“length direction,” corresponding to XG, and 
“profile direction,” corresponding to YG (Fig. 
2). Also, the definitions of “toe” and “heel,” as 
well as “top” and “root,” are provided.   

A theoretical tooth contact analysis prior 
to gear manufacturing can be performed in 
order to observe the effect of the crowning in 
connection with the basic characteristics of a 
particular gear set.

Tooth Contact Analysis
Figure 3 shows the result of a tooth contact 

analysis of a conjugate spiral bevel gear set. 
The two columns in Figure  3 represent the 
analysis results of the coast side (left, verti-
cal sequence) and the drive side (right, ver-
tical sequence). The drive side is the flank 
pair, where the pinion concave flank meshes 
with the gear convex flank. The reverse direc-
tion is called the coast side. In the drive side 
direction, the pinion deflects away from the 
ring gear—which is, among other factors, the 
preferred condition. Transmission of torque 
and speed on the coast side leads to a pinion 
deflection toward the ring gear, thus reducing 
backlash in extreme cases to zero. Since this 
situation occurs under high load and interrupts 
any lubrication, it leads to surface damages 
that can result in tooth fracture. The recom-
mended backlash in bevel gear sets is 0.03 
times the module.  

The example in Figure 3 is the analysis 
results of a conjugate bevel gear set—the basis 
of all gearing. Each flank surface point of the 
pinion interacts with a corresponding gear 
flank surface point, in accordance with gear-
ing law—i.e., it transmits the ratio given by 
the quotient of the pinion and gear tooth count 
perfectly.

The top graphics in Figure 3 show the so-
called ease-off topography in a three-dimen-
sional representation (above the projection of Figure 2—Definition of presentation plane.

Figure 1—Universal model for bevel gear flank generation.

the gear tooth area). The ease-off shows the 
consolidated amounts of crowning applied to 
the pinion and gear flank surfaces (versus the 
theoretically precise flanks). In this example of 
a conjugate gearset, the ease-off values above 
the presentation plane are zero. 
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Figure 3—Tooth contact analysis of conjugate gear set.

Figure 4—Tooth contact analysis with various types of crowning. 
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Below the ease-offs, the motion transmis-
sion graphs of the particular mating flank pair 
are shown. If the pinion drives with a constant 
angular velocity, then the gear ideally should 
also rotate with a constant angular velocity but 
slower than the pinion by the factor of the gear 
ratio. The motion transmission graphs show 
the angular variation of the gear rotation from 
the ideal performance. In the present case of 
zero crowning, the motion transmission graph 
is a horizontal line (precise motion transmis-
sion).

The contact pattern at the bottom of Figure 
3 shows contact lines (inside of the gear tooth 
projection) that extend throughout the active 
working area of the flank. This is also typical 
for conjugacy between pinion and gear flanks; 
however, such a conjugate tooth contact leads 
to edge contact as result of manufacturing tol-
erances and deflections under load.    

Crowning has to be applied either to the 
pinion or gear—or both—in order to prevent 
edge contact along the boundaries of the teeth. 
Figure  4 shows TCA sequences of the three 
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typical kinds of crowning. The top graphics 
show the ease-off topography. The surface 
above the presentation grid shows the con-
solidation of the pinion crowning portion and 
the gear crowning portion. The ease-offs in 
Figure 4 could be the result of pinion crown-
ing only, or of the superimposition of a certain 
amount of both pinion and gear crowning. 

Below each ease-off, the motion transmis-
sion graphs of the particular mating flank pair 
are shown. The graphs are drawn for the rota-
tion and mesh of three consecutive pairs of 
teeth. While the ease-off requires reflecting a 
sufficient amount of crowning in order to pre-
vent edge contact and allow for load-affected 
deflections, the crowning will in turn cause 
proportional amounts of maximal motion vari-
ation from zero.  

At the bottom of Figure 4, the contact pat-
terns are calculated for zero load and a virtual 
marking compound film of 6 μm thickness. 
This basically duplicates the tooth contact one 
would observe—i.e., rolling the real version of 
the analyzed gear set under light load on a roll 
tester while the gear member is coated with a 
marking compound layer of about 6 µm thick-
ness. A smaller tooth contact area generally 
results from large magnitudes of ease-off and 
motion graph magnitudes, and vice versa. The 
parallel lines inside of the contact pattern are 
the contact lines for a number of discrete roll 
and contact positions between a pinion and a 
gear flank. The central line inside of the con-
tact pattern is the path of contact, which is the 
sum of contact locations if the teeth are rolled 
with zero load. The left vertical sequence in 
Figure 4 is the analysis result of a pure profile 
crowning. The sequence in the center shows a 
pure length crowning and the right sequence is 
the result of a pure flank twist. Real bevel and 
hypoid gear sets consist generally of a mixture 
of these three crowning types.   

Lubrication Gap Analysis
The basis of a lubrication gap analysis is 

the geometric and kinematic understanding of 
the interaction between the pinion and gear 
flank surfaces. Figure  5 (left side) shows a 
pinion flank rolling on a gear flank with a con-
tact zone. The contact zone extends distance A 
along one pair of corresponding, potential con-
tact lines between pinion and gear. While the 
gear set rotates in mesh, the contact zone will 
move from its current location—i.e., to the 
right. The relative surface curvatures between 
the two flanks are separated in two principal 

directions: one along the contact line and one 
along the path of contact, which is the direc-
tion from one contact line to the next. The 
curvature in the path-of-contact direction is 
some magnitudes larger than the curvature in 
contact-line direction, which is reflected by 
A>>B. However, depending on the angle of 
the contact lines and on the direction of the 
sliding and rolling velocities between both 
flanks—both directions, contact line direction 
and the direction perpendicular to that (the 
latter is not always identical with the path-of-
contact direction)—have to be considered for 
a hydrodynamic investigation. The right-side 
graphic in Figure 5 shows the reduced curva-
tures of 20 discrete contact lines, each in their 
contact position, plotted above the gear projec-
tion plane (contact line scan). 

Figure  6 shows the sliding- and rolling-
velocity vectors of a typical hypoid gear set for 
each path-of-contact point for the 20 discussed 
roll positions; each vector is projected to the 
tangential plane at the point of origin of the 

Figure 5—Two lubrication gap aspects.

Figure 6—Sliding and rolling velocities of a hypoid gear set along the path 
of contact.
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Figure 7—Definition of sliding and rolling velocity. 

vector. The velocity vectors are drawn inside 
the gear tooth projection plane. The points of 
origin for both rolling- and sliding-velocity 
vectors are grouped along the path of con-
tact, which is found as the connection of the 
minima of the individual lines in the contact 
line scan graphic (Fig. 5, right). An observer 
of one particular path-of-contact point on the 
gear flank surface would notice a momentarily 
contacting pinion point sliding away in the 
direction and with the speed represented by the 
sliding-velocity vector. The observer would 
also notice (particularly at the pitch point in 
straight bevel and spiral bevel gears, where no 
sliding and only rolling occurs) that the solid 
body connected to that point moved in a cer-
tain direction by rolling like a wheel rolls on 
pavement. The direction of this rolling and the 
movement accomplished via rolling (per time 
unit) are represented by the direction and mag-
nitude of the rolling-velocity vector. Another 
way to explain the definition of rolling and 
sliding velocity in bevel and hypoid gears is 
shown in Figure 7. Disk 1 (top) rotates with 
w1 and is in contact with Disk 2 (bottom). The 
circumferential speed of Disk 1 is called the 
tangential velocity V

Tangential
. The component of 

V
Tangential

, which points in the axial direction of 
Disk 2, cannot rotate Disk 2—it only causes 

a sliding V
Sliding

. The component that points in 
tangential direction of Disk 2 V

Rolling
 and causes 

Disk 2 to rotate with w2 is called the rolling 
velocity.

It is worth noting that the rolling veloc-
ities have a relatively consistent direction, 
while the sliding velocities change their direc-
tion along the path of contact significantly. 
Figure  6 shows the average directions of the 
contact lines. The sliding and rolling veloci-
ties are projected in the contact-line direction 
(see two example projections at left and right, 
Fig. 6). An analog projection in the direction 
perpendicular to the contact lines (not identi-
cal to the path-of-contact direction) allows two 
separate observations of the dynamics along 
the contact lines and perpendicular to them. 
The gap geometry change from contact line to 
contact line (Fig. 5, right) can be considered 
as an additional aspect. A single observation, 
for example, of the main direction seems to be 
unacceptable since sliding and rolling velocity 
have different directions and change along the 
path of contact significantly. 

The answer to the question—Why is the 
split of sliding and rolling velocities proposed 
in the contact line direction and in a second 
component in the direction perpendicular to 
it, rather than in the path-of-contact direc-
tion—may not be obvious. The path of contact 
is not a principal curvature direction. Sliding 
and rolling velocities and the geometry of the 
contact line scan will move the contact from 
one path-of-contact point to the next. Small 
crowning changes will not influence the con-
tact lines but will have great influence on the 
path-of-contact direction. The path of contact 
is an indirect gear set property that depends on 
the following parameters:

• 	 sliding velocity (hypoid offset)
• 	 rolling velocity (spiral angle)
• 	 contact line orientation (spiral angle)
• 	 characteristic of crowning (ease-off,  

	 contact-line crowning)  
This phenomenon, which can only be 

observed in bevel and hypoid gears, derives 
from the fact that along the major contact 
movement (direction perpendicular to contact 
lines) the curvature of the lubrication gap is 
basically constant, but the velocities change. 
Whereas, in the contact-line direction, both 
curvature and velocities change constantly 
(Figs. 5–6). 

Examples
The observation of this complex condition 
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leads to Figure 8, which shows six interesting 
cases of lubrication gap geometry and kine-
matics. Lubrication fluid is presented at right 
in each case drawing. Case 1 shows a clock-
wise rotation of a circular profile and a sliding 
to the right. This presents an enhancing condi-
tion for hydrodynamics. In Case 2 the rolling 
is reversed, thus reducing oil access to the 
lubrication gap. In Case 3 the sliding velocity 
and rotation are reversed, versus Case 1, thus 
presenting the most unfavorable kinematic 
lubrication condition. Case 4 has a reversed 
velocity direction versus Case 1 that presents a 
lubrication condition similar to Case 2. Cases 
5 and 6 at bottom of Figure 8 are geometry 
variations that are applicable for the rolling 
and sliding directions indicated in Figure 6.

In Case 5 the curvature reduces while the 
profile rotates. This increases the lubricant 
pressure in front of the gap and will therefore 
enhance Case 1. In Case 6 a curvature increase 
is noticed while the rotation is progressing, 
which expands the lubrication gap. The latter 
will generate a vacuum that tends to pump the 

lubricant away from the contact zone. Case 6 
will reduce the lubrication quality. A simpli-
fied rating of the lubrication quality is pro-
posed:  
 Very Good:
a	 Case 5
b	 Case 1
c	 Case 6
d	 Case 2
e	 Case 4

Poor: 		
f	 Case 3

A qualitative judgment of the lubrication 
case of a bevel or hypoid gear set is possible 
by comparing the contact line gaps (and their 
change during the rolling process) as well as 
the velocities with the principal cases shown 
in Figure 8.

With awareness of the rolling and sliding 
velocities within the flank surface area, every 
contact line and every path-of-contact point 

Figure 8—Six principal cases of lubrication gap kinematics. 

continued

Reduced
Gap Profile

w

Contact
Point Gap Angle

Roll

Reduced
Base Plane

CASE 1

d

w

Contact
Point Gap Angle

Roll

CASE 2

d

w

Contact
Point Gap Angle

Roll

CASE 5 

d

w

Contact
Point Gap Angle

Roll

d

CASE 4CASE 3

w

Contact
Point

Roll

d

w

Contact
Point

Roll

d

CASE 6 

V
slide

V
slide

V
slide

V
slide

V
slide

V
slide

Lubricant



   GEARTECHNOLOGY     August  2010     www.geartechnology.com52

can be assigned to one case in Figure 8. 
It is also possible to use the reduced 
curvatures (which are contained in the 
contact line graphs) in connection with 
surface roughness and normal force 
distribution to establish a Stribeck 
graph and find contact conditions 
(boundary condition, mixed contact 
and hydrodynamic contact) in different 
cases and in different flank areas. 
Proposed Bearing Forces Calculation

A formula derivation to calculate 
bearing forces is shown below. The 
formulas are based on the assump-
tion that one pair of teeth transmits the 
torque with one normal force vector in 
the mean point of the flank pair. Figure 
9 shows a graphical representation of 
the following derivation:

• The observed flank is rotated with 
the mean point into the horizontal Y-Z 
plane. The force F

x
 is the tangential 

force that transmits the torque. The 
normal force vector is found by a vec-
tor rotation from an X-orientation and 
in three steps—pressure angle, spi-
ral angle and pitch angle—shown in 
Equation 3. With knowledge of the 
tangential component, the solution 
of Equation 7 can be plugged into 
Equations 4, 5 and 6 in order to find a 
universal solution in Equations 8, 9 and 
10 for the bearing loads of one particu-
lar member. In the case of a right-hand, 
spiral-angle β, the sign is positive. In 
the case of a left-hand, spiral-angle 
β, the sign is negative. If the torque 
develops a force F

x
 pointing in contrast 

to Figure 9 to the positive X-direction, 
then a and T must be applied with a 
negative sign.        

The results of the simplified bear-
ing force calculation are good approxi-
mations and reflect the real bearing 
loads for multiple-tooth meshing with-
in an acceptable tolerance. A precise 
calculation is, for example, possible 
with Gleason bevel and hypoid gear 
software.

(Next issue—Hypoid Gears) 

{Fn} = (Fx, Fy, Fz)

Tangential force Fx calculated from torque
Fx = −T / (Am • sinγ)

(1)

(2)

(3)

(4) 
(5)
(6)

(7)

(8)
 (9)
(10)

Rotation of vector normal to flank
{Fn} = (90° − γ)X • (β)Z • (α)Y • (Fn, 0, 0)

Matrix multiplication of formula 3 and component solution
Fx = Fn • cosβ • cosα   
Fy = Fn • (cos(90º − γ) • sinβ • cosα + sin(90º − γ) • sinα)  
Fz = Fn • (sin(90º − γ) • sinβ • cosα − cos(90º − γ) • sinα)

where:
T  Torque of observed member
Am  Mean cone distance
γ  Pitch angle
β  Spiral angle
α  Pressure angle
{Fn}  Normal force vector
Fn  Absolute value of normal force
Fx, Fy, Fz Bearing load force components
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Figure 9—Bearing reaction load calculation.

Eliminate absolute value of Fn
Fn= Fx / (cosβ • cosα) = –T / (Am • sinγ • cosβ • cosα)

Final solution of force components
Fx = –T / (Am • sinγ)
Fy = –T • (sinγ • sinβ • cosα + cosγ • sinα) / (Am • sinγ • cosβ • cosα)
Fz = –T • (cosγ • sinβ • cosα – sinγ • sinα) / (Am • sinγ • cosβ • cosα)




