
Introduction
 Analytical methods for determining the gear fillet pro-
file (trochoid) have been well documented. Khiralla (Ref. 1) 
described methods for calculating the fillet profile of hobbed 
and shaped spur gears. Colbourne (Ref. 2) provided equations 
for calculating the trochoid of both involute and non-involute 
gears generated by rack or shaper tools. The MAAG Gear 
Handbook (Ref. 3) also provided equations for calculating 
trochoids generated with rack-type tools that have circular tool 
tips. Vijayakar, et al. (Ref. 4) presented a method of determining 
spur gear tooth profiles using an arbitrary rack. The above men-
tioned are only samples of many published works. However, the 
method for determining the trochoid of a helical gear generated 
with a shaper tool is not widely published. This article presents 
an intuitive algorithm where the fillet profile of a shaper-tool-

generated external or internal helical gear can be calculated.
 A shaper tool generating a gear can be visualized as a gear 
set meshing with zero backlash. The algorithm in this article is 
based on a shaper tool in tight mesh with a semi-finished helical 
gear. The semi-finished gear geometry was used for calculation 
because the shaper tool used as the semi-finishing tool is usually 
the one that generates the trochoid. However, if the shaper cutter 
is the finishing tool, the algorithm presented will also work by 
letting the finishing stock equal zero. The trochoid of a spur gear 
can also be calculated by letting the helix angle equal zero. 
 The shaper tool used in this algorithm may have a different 
reference normal pressure angle than that of the gear. A neces-
sary condition for a shaper tool to generate the correct involute 
profile on a gear is that both the tool and the gear must have 
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Management Summary
This article describes a root fillet form calculating method for a helical gear generated with a shaper cutter. The shaper cutter con-

sidered has an involute main profile and an elliptical cutter edge in the transverse plane. Since the fillet profile cannot be determined 
with closed-form equations, a Newton’s approximation method was used in the calculation procedure. The article also explores the 
feasibility of using a shaper tool algorithm for approximating a hobbed fillet form. Finally, the article discusses some of the applications 
of fillet-form calculation procedures, such as form diameter (start of involute) calculation and finishing stock analysis.
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Figure 2—Shaping an internal gear.
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Figure 1—Shaping an external gear.
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equal normal base pitches. This article stipulates that the axis of 
the shaper tool and the gear are parallel, which is often true for 
gear shaping. Consequently, the shaper tool and the gear must 
also have equal base helix angles.
 Although the algorithm is based on the shaper cutter as a 
generating tool, the presented method can also be used to cal-
culate a trochoid generated with a hob or a rack-type tool if the 
number of the shaper teeth is large (e.g. 10,000).

Symbols and Conventions
 The symbols are defined where first used. This article tries 
to adhere to the following rules in subscript usage:
 • Symbols related to tool geometry have subscript “0”.
 • No subscript is used for symbols related to the gear.
 • Subscript “n” is used for measurements in the normal   

 plane.
 • Subscript “r” is used for symbols related to the semi-fin - 

 ished gear.
 • Subscript “g” is used for symbols related to the generat-  

 ing pitch circle.
 When dual signs are used in an equation (e.g. ±), the upper 
sign is for external gears and the lower one for internal gears.
 Non-italicized uppercase symbols are used to designate 
points on the shaper tool, the gear, or other points of interest. 
Points are also represented as the coordinates (x,y). The length 
of a vector (e.g. R) is represented as ||R||.

Coordinate System
 The reference position of a shaper tool generating a gear is 
depicted in Figure 1 for external gear shaping and Figure 2 for 
internal.
 The following coordinate system and sign conventions are 
followed:
 • A standard cartesian coordinate system is used. The cen- 

 ter of the shaper tool O0 is (0,0). 
 • The reference position of the shaper tool is with  one   

 of its teeth aligned with the y-axis. The end of the shaper  
 tooth points in the –y direction.

 •  The center of the gear, OG, is also on the y-axis with one  
 of the tooth spaces aligned with the y-axis. The opening  
 of the tooth space is in the +y direction. 

 •  Angular measures, related to tool or gear rotation or 
 location of a point, have signs. Counterclockwise rota-
 tion from the reference line is positive, and clockwise is  
 negative.

Shaper Tool and Gear Geometry
 The following are required tool and gear data for calculat-
ing the trochoid:

Shaper tool data:  
Pnd0 is the reference normal diametral pitch, tool (in.-1)
n0 is the number of teeth, tool
φn0 is the reference normal pressure angle, tool
ψ0 is the reference helix angle, tool
sn0 is the reference normal circular thickness, tool (in.)
da0da0d  is the outside diameter, tool (in.)
ρ0 is the tool tip radius (in.)
δ0 is the protuberance (in.)

Gear data:
Pnd is the reference normal diametral pitch, gear (in.-1)
n is the number of teeth, gear
φn is the reference normal pressure angle, gear
ψ is the reference helix angle, gear
sn is the reference normal circular thickness, gear (in.)
µs is the stock allowance per flank, gear (in.), defined on the 
 reference pitch circle (not along the base tangent).

Basic Shaper Tool and Gear Geometry
 The following equations calculate the basic tool and gear 



inv is the involute function of an angle
   inv α = tan α – α

Standard reference pitch radius of gear, r (in.)r (in.)r

  (9)

Base radius of semi-finished gear, rbrrbrr  (in.)br (in.)br

  (10)

The helix angle at standard pitch radius of semi-finished gear, 
ψr

   (11)

Transverse pressure angle at reference pitch radius of semi-fin-
ished gear, φr

  (12)

Transverse circular thickness of semi-finished gear, sr (in.)

   (13)

Base circular thickness of semi-finished gear, sbr (in.)br (in.)br

   (14)

Center of Tool Tip on a Shaper Tool
 A shaper tool for gear semi-finishing usually has protuber-
ance. It generates undercut on a gear, so that the finishing tool 
only needs to machine the involute profile of the gear. To obtain 
the designed amount of protuberance on a shaper tool, the tool 
tip is made tangent to the involute profile that is temporarily 
formed by increasing the shaper tooth thickness to include the 
protuberance (see Fig. 3). The tangent point, common to the 
tool tip and the involute profile, will be referred to as the profile 
tangent point, P0 . When the temporarily formed involute profile 
is removed, the shaper tool will have the designed amount of 
protuberance.
 The shaper tool tip is also made tangent to the outside diam-
eter of the tool (see Fig. 4) so that the transition from the outside 
diameter to the tool tip will be smooth. The common tangent 
point on the shaper tool tip and the outside diameter of the tool 
will be referred to as the end tangent point, E0.
 The following are the required data for calculating the cen-
ter of the shaper tool tip:

da0 da0 d is the outside diameter, tool (in.) 
sb0 is the base circular thickness, tool (in.)
ρ0 is the tool tip radius (in.)
δ0 is the protuberance (in.)
ψb0 is the base helix angle, tool
ψ0 is the reference helix angle, tool

 The base circular thickness of the involute profile, formed 

geometry:

Standard transverse pressure angle of tool, φ0

   (1)

Standard reference pitch radius of tool, r0r0r  (in.)

 (2)

Base radius of tool, rb0rb0r  (in.)

   (3)

Reference transverse circular thickness of tool, S0 (in.)

   (4)

Transverse base pitch of tool, pb0 (in.)

   (5)

Normal base pitch of tool, pnb0 (in.)

 (6)

Base helix angle of tool, ψb0

  (7)

Base circular thickness of tool, sb0 (in.)

  (8)

where
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Figure 3—Tool tip of a shaper tool.
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Figure 4—End of tool tip (with helix angle exaggerated).
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by increasing the shaper tool tooth thickness to include the pro-
tuberance, sb0_pr

   (15)s   (15)sb0_pr   (15)b0_pr =    (15) = s   (15)sb0   (15)b0 +     (15) +  cos    (15)cos ψ   (15)ψ   (15)

Coordinates of the center of the tool tip, S0

  (16)S  (16)S0  (16)0 = (   (16) = ( r  (16)rS0  (16)S0sin  (16)sinλ  (16)λS0  (16)S0 , –  (16) , –r  (16)rS0  (16)S0cos  (16)cosλ  (16)λS0  (16)S0 )  (16) )

where

rS0  
is the tool radius to the center of the tool tip (in.)

λS0  is the offset angle of the tool tip. For a shaper tool with 
  
  is the offset angle of the tool tip. For a shaper tool with 
  

full tip radius, λS0 will equal zero.

Coordinates of the profile tangent point, P0, are

  (17)

where

θPn0  is the auxiliary angle that locates P0. The angle is 
measured in the normal plane, clockwise from the 
horizontal axis of the tool tip. θPn0 will usually have a 
negative value.

The tool radius to profile tangent point, rP0rP0r  (in.), is

    (18)r    (18)rP0    (18)P0rP0r    (18)rP0r  = || P    (18) = || P0    (18)0 ||    (18) ||

The transverse pressure angle, φP0, at P0 is

   (19)φ   (19)φP0   (19)P0 = arccos(      )   (19) = arccos(      ) = arccos(      )b0 = arccos(      )   (19) = arccos(      )b0 = arccos(      ) = arccos(      )   (19) = arccos(      )r   (19)r = arccos(      )r = arccos(      )   (19) = arccos(      )r = arccos(      )
P0

   (19)
P0rP0r   (19)rP0r

The tangent angle, αP0, at P0 (the derivation of Equation 20 is 
given in Appendix A) is

   (20)α   (20)αP0   (20)P0 = arctan (               )   (20) = arctan (               ) = arctan (               )
ψ

 = arctan (               )   (20) = arctan (               )
ψ

 = arctan (               ) = arctan (               )0 = arctan (               )   (20) = arctan (               )0 = arctan (               ) = arctan (               )   (20) = arctan (               )
tan

   (20)
tanθ

   (20)
θ

 = arctan (               )
θ

 = arctan (               )   (20) = arctan (               )
θ

 = arctan (               )

The angle between the y-axis and the radius to the profile tan-
gent point, ζP0, is
  s  sb0_pr
  

b0_pr
 (21)

The coordinates of the end tangent point, E0, are

   (22)E   (22)E0   (22)0 = S   (22) = S0   (22)0 + (    (22) + ( ρ   (22)ρ0    (22)0               ,    (22)              , ρ   (22)ρ0   (22)0sin   (22)sinθ   (22)θEn0   (22)En0 )   (22) )En0   (22)En0   (22)

where

θEn0  is the auxiliary angle that locates E0. The angle is 
measured in the normal plane, clockwise from the 
horizontal axis of the tool tip. θEn0 will usually have a 
negative value.

The angle of tangent, αE0, at the end tangent point, E0, is

   (23)α   (23)αE0   (23)E0 = arctan (              )   (23) = arctan (              ) = arctan (              )   (23) = arctan (              )
tan   (23)tan

 = arctan (              )
tan

 = arctan (              )   (23) = arctan (              )
tan

 = arctan (              )
θ   (23)θ

 = arctan (              )
θ

 = arctan (              )   (23) = arctan (              )
θ

 = arctan (              )

The tool radius to end tangent point, rE0rE0r  (in.), is

   (24)r   (24)rE0   (24)E0rE0r   (24)rE0r  = || E   (24) = || E0   (24)0 ||   (24) ||

The following are conditions for the tool tip to position properly 
on a shaper tool tooth:

1) The profile tangent point, P0, on the tool tip must also be 
a point on the involute profile that includes the protuberance, 
thus

   (25)

2) The angle, ζP0, subtended by one half of the transverse cir-
cular thickness of the involute curve (include the tool protuber-
ance) at P0, must equal the angle formed by the y-axis and the 
line connecting the center of the tool to P0.

   (26)

where

xP0  is the x-coordinate of profile tangent point, P0 (in.)

3) The end tangent point must also be a point on the outside 
diameter of the shaper tool, thus

   (27)

4) The tangent angle, αE0, at the end tangent point, E0, must 
equal the angle formed by the y-axis and the line connecting the 
center of the tool to E0

   (28)

   (25)α   (25)P0   (25)P0   (25)   (25) +    (25)φ   (25)φ   (25)P0   (25)P0   (25)   (25) –    (25)ζ   (25)ζ   (25)P0   (25)P0   (25)   (25) –       = 0      (25)
π

   (25) –       = 0      (25)2    (25)2    (25)   (25) –       = 0      (25)2    (25) –       = 0      (25)

ζ   (26)ζ   (26)P0   (26)P0   (26) – arcsin (       ) = 0   (26) – arcsin (       ) = 0   (26)
xP0   (26)P0   (26)   (26) – arcsin (       ) = 0   (26)P0   (26) – arcsin (       ) = 0   (26)r – arcsin (       ) = 0r – arcsin (       ) = 0   (26) – arcsin (       ) = 0   (26)r   (26) – arcsin (       ) = 0   (26)

P0rP0r   (26) – arcsin (       ) = 0   (26)

   (27)r   (27)E0   (27)E0   (27)   (27)r   (27)E0   (27)r   (27)   (27) –        = 0   (27)   (27) –        = 0   (27)
da0   (27)a0   (27)   (27) –        = 0   (27)a0   (27) –        = 0   (27)
da0d

2
   (27)

2
   (27)   (27) –        = 0   (27)

2
   (27) –        = 0   (27)

   (28)α   (28)
E0

   (28)
E0

   (28) – arcsin (        ) = 0    (28) – arcsin (        ) = 0    (28)
xE0   (28)E0   (28)   (28) – arcsin (        ) = 0    (28)E0   (28) – arcsin (        ) = 0    (28)r – arcsin (        ) = 0 r – arcsin (        ) = 0    (28) – arcsin (        ) = 0    (28)r   (28) – arcsin (        ) = 0    (28)

E0rE0r   (28) – arcsin (        ) = 0    (28)
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F(X) = 0

F(X) = (f1(X), f2(X), f2(X), f (X), f3(X), f3(X), f (X), f4(X), f4(X), f (X))T

  = (Eq. 25, Eq. 26, Eq. 27, Eq. 28)

0  = (0,0,0,0)T

δ

 Equations 25–28 must all be satisfied for the tool tip to be 
correctly positioned on a shaper tool tooth. The variables to be 
determined are rS0, λS0, θPn0 and θEn0. Since the systems of the 
equations are transcendental and cannot be solved directly, the  
Newton’s method is used to calculate the roots for Equations 
25–28.

Solving the System of Non-linear Equations 
for Center of Tool Tip

 For simplicity, rewrite Equations 25–28 as generic vector 
equations in the form

   (29)F(X) = 0   (29)F(X) = 0

where

   (30)  = (Eq. 25, Eq. 26, Eq. 27, Eq. 28)   (30)  = (Eq. 25, Eq. 26, Eq. 27, Eq. 28)T   (30)T

   (31)0  = (0,0,0,0)   (31)0  = (0,0,0,0)T   (31)T

   (32)

The Newton’s iteration equation (Ref. 6) is written as

    (33)X1 = X +     (33)X1 = X + δ    (33)δX    (33)X

where δX satisfies the following system of linear equations

   (34)

where
X1  is the vector of the new roots for the next iteration
X  is the vector of current roots
δX  is the vector of Newton’s steps for the next iteration
J  is the Jacobian matrix

where

  (35)

  is the partial derivative of the ith equation with respect 
to the jth variable

The partial derivatives in the Jacobian matrix can be approxi-
mated using the finite differences 

   (36)

where
i  is the ith row of the Jacobian matrix
j  is the jth column of the Jacobian matrix
∆XjXjX   is a vector with its jth element equal to the jth  element 

of the current Newton’s step, δX, and all remaining 
elements equal 0

 For each iteration, the sum of the absolute values of the 
functions (errors) is calculated. 

   (37)

The Newton’s iteration procedure is terminated when the error 
(see Eq. 37) becomes smaller than a predetermined tolerance, or 
when a predetermined number of iterations has been reached.
 The Newton’s iteration procedure is described below:

  1) Select a set of initial guess values for the new root, X1. The 
following are the suggested values:

  2) Select the initial Newton’s steps, δX.  The following values 
work satisfactorily:  

  3) Evaluate the system of non-linear equations (see Eq. 30) at 
the new root, F(X1).

  4) Calculate the error ERR(X1) (see Eq. 37).
  5) The iteration is terminated, if ERR(X1) ≤ 10–10 or if a pre-

determined number of iterations (30 should be sufficient) 
have been reached. Otherwise, continue with the next 
step.   

  6) Save the new roots as the current roots, so that a new set of 
roots can be calculated

 (38)

  7) Calculate the Jacobian matrix, column by column, starting 
with column one using Equation 36.  Repeat the calculation 
procedure for the remaining columns until the Jacobian 
matrix is completed (see Eq. 35).

  8) Solve the system of linear equations (see Eq. 34)  for the 
next set of the Newton’s steps, δX.

  9) Calculate new roots, X1, using Equation 33.
10) Repeat steps 3–9 until step 5 is satisfied.

 The system of linear equations in step 8 (see Eq. 34) can be 
solved by inverting the Jacobian matrix or by using one of many 

J = 
  (35)

J = 
  (35)

f1  ∂f1   ∂f1

x1  ∂x2  
…

∂x4

f2  (35)2  (35)
f2f   ∂f2  (35)2  (35)

f2f    
x  (35)x  (35)

1  ∂  (35)∂  (35)x  (35)x  (35)
2  

  (35)…  (35)

   

∂f4f4f     ∂f4f4f
∂x1  

… …
∂x

  (35)  (35)

…

…  (35)…  (35)

… … …

    
  (35)

    
  (35)

∂    ∂f    f∂    ∂x    x∂    ∂f    f
∂

    
∂  (35)∂  (35)

    
  (35)∂  (35)x

    
x  (35)x  (35)

    
  (35)x  (35)

    
  (35)

    
  (35)


    

        

4

    

4

x

    

x4

    

4

    


  (35)



  (35)    

    

  is the partial derivative of the i
∂fi  is the partial derivative of the ii  is the partial derivative of the i
fif

∂
  is the partial derivative of the i
∂
  is the partial derivative of the i
xjxjx

J •    (34)J •    (34)δ   (34)δ   (34)X = – F(X)   (34)X = – F(X)   (34)

∂fi   (36)i   (36)
fif     fi   (36)i   (36)

    fi    f (X + 
   (36)

(X + 
   (36)

∆Xj   (36)j   (36)
XjX ) – f

   (36)
) – f

   (36)i   (36)i   (36)
) – fi) – f

   (36)
) – f

   (36)i   (36)
) – f

   (36)
(X)

   (36)
(X)

   (36)∂   (36)∂   (36)
x

   (36)
x

   (36)
jxjx    δ   (36)δ   (36)

x
   (36)

x
   (36)δxδ   (36)δ   (36)

x
   (36)δ   (36)

jxjx
   (36)   (36)   (36)≈   (36)

ERR(X1) =   |f   (37)ERR(X1) =   |f   (37)
i

   (37)
i

   (37)ERR(X1) =   |fiERR(X1) =   |f   (37)ERR(X1) =   |f   (37)
i

   (37)ERR(X1) =   |f   (37)(X1)|   (37)(X1)|   (37)   (37)ERR(X1) =   |f   (37) Σ   (37)ERR(X1) =   |f   (37)
   4

  i=1
ERR(X1) =   |f

  i=1
ERR(X1) =   |f

x2(λS0) = 0.0175  

x1(rS0) =        – ρ0

da0) =        – a0) =        – 
da0d

) =        – 
2

) =        – 
2

) =        – 

x3(θPn0) = –φn0  

x4(θEn0) = –1.4835

δX = (0.01, 0.01, 0.01, 0.01)T

 (38)X = X1 (38)

X  = (
   (32)

X  = (
   (32)

x1   (32)1   (32)
, x2   (32)2   (32)

, x3   (32)3   (32)
, x4   (32)4   (32)

)
   (32)

)
   (32)

T

  = (   (32)  = (   (32)r   (32)r   (32)
S0, λ

   (32)λ   (32)
S0, θ

   (32)θ   (32)
Pn0, θ

   (32)θ   (32)
En0)

   (32))   (32)   (32)T   (32)



Figure 5—An arbitrary point X0 and  the normal on the tool tip.
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numerical root finding algorithms, such as Gaussian elimination 
method (Ref. 7). 

Generating Pressure Angle and Center Distance
 The generating pressure angle and the center distance are 
based on tight meshing of a shaper tool with a semi-finished 
gear.  The involute function of the generating pressure angle, 
invφg,  is given by the following equation (the derivation of 
Equation 39 is given in Appendix A):

   (39)inv   (39)invφ   (39)φ  =    (39) = 2(
   (39)

2( )
   (39)

)
b0   (39)b0 br   (39)br p

   (39)
pb0   (39)b0   (39)

where

sb0 is the base circular thickness of the tool (in.)
sbr is the base circular thickness of the semi-finished gear 

(in.)
pb0 is the transverse base pitch of the tool (in.)
rb0 rb0 r is the base radius of the tool (in.)
rbr rbr r is the base radius of the semi-finished gear (in.)

The generating pressure angle, φg, can be calculated by taking 
the arc of the involute function (Ref. 5). The generating center 
distance, cg (in.), is

   (40)c   (40)cg   (40)g =    (40) = br   (40)br b0    (40)b0 

cos   (40)cosφ   (40)φ   (40)

The generating pitch radius of the shaper tool, rg0rg0r , is

   (41)r   (41)rg0   (41)g0rg0r   (41)rg0r  =    (41) = b0   (41)b0

cos   (41)cosφ   (41)φ   (41)

The generating pitch radius of the gear, rg, is

   (42)r   (42)rg   (42)g =    (42) = r   (42)rg0   (42)g0rg0r   (42)rg0r n   (42)n
n

   (42)
n

   (42)

Determination of Shaper-Tool-Generated Fillet Profi le
 Conjugate point of an arbitrary point on a shaper tool tip.
The fillet profile (trochoid) of a helical gear is generated by the 
tool tip of a shaper tool.  This section describes the procedure 
for calculating a point on the trochoid that is conjugate to an 
arbitrary point on the shaper tool tip, X0 (see Fig. 5). 
 The coordinates of an arbitrary point, X0, on the tool tip 
are

   (43)X   (43)X0   (43)0 = S   (43) = S0   (43)0 + (   (43) + (ρ   (43)ρ0   (43)0                ,    (43)                , ρ   (43)ρ0   (43)0sin   (43)sinθ   (43)θXn0   (43)Xn0)   (43))Xn0   (43)Xn0

cos   (43)cos                , cos                ,    (43)                , cos                , ψ   (43)ψ                , ψ                ,    (43)                , ψ                ,    (43)

where

S0   are the coordinates of the center of tool tip (in., in.) 
ρ0   is the tool edge radius (in.)
θXn0  is the auxiliary angle that locates an arbitrary point on the 

tool tip. This angle is measured in the normal plane, 
clockwise from the horizontal axis of the tool tip. θXn0

will usually have a negative value.

The slope, mX0, of the normal passing through X0 is  

    
www.powertransmission.com 
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(44)

The derivation of Equation 44 is given in Appendix A.
Note: For a shaper tool with non-elliptical tool tip, 

Equations 43 and 44 should be bypassed and the actual tool 
tip geometry, X0 and mX0, should be used for the subsequent 
calculations.
 The normal at X0 can be expressed as a linear equation:

   (45)

where

xX0  is the x-coordinate of X0

yX0  is the y-coordinate of X0

When extended, the normal will intersect the generating pitch 
circle of the shaper tool at point G0 (see Fig. 5).  The x-coordi-
nate of the intersection point can be calculated as:

   (46)

where

rg0 rg0 r is the generating pitch radius, tool (in.)
k1 is a temporary variable
k2 is a temporary variable (in.)

   (47)

  
 (48)

The angle, ξ0, formed between the y-axis and the tool radius at 
the intersection point, G0, is  
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Figure 7—The arbitrary point X0 on the tool tip and its conjugate point TX0
on the trochoid.

Figure 8—Zones of a shaper cutter. Figure 9—Shaper-tool-generated fillet profile (trochoid).
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Figure 6—The arbitrary point X0 and the normal after rotating the shaper tool 
for an angle –ξ0.

   (49)

 Note: The angle ξ0 may be positive or negative. If G0 is 
on the left side of the y-axis, xG0 (see Eq. 49) will be negative, 
and so will ξ0. On the other hand, if G0 is on the right side of 
the y-axis, ξ0 will have a positive value.
 To find the conjugate point of X0, the shaper tool is rotated 
from its reference position (see Fig. 6) by an angle, –ξ0.  The 
arbitrary point X0 will rotate to a new position, X0'
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 M(ϕ) is a rotation matrix. When multiplied to a vector, the 
vector would be rotated an angle ϕ about the origin (0,0).  If
ϕ > 0, the rotation is counterclockwise. Otherwise, the rotation 
is clockwise.
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ξ ξ0

n0

n

X0 = M(–ξ)(X0 G)

 After rotating the cutter (see Fig. 6), the normal at the arbi-
trary tool tip point (now X0') will pass through the generating 
pitch point G, thus satisfying the law of conjugate action (Ref. 
1):

To transmit uniform rotary motion from one shaft to 
another through the action between two geometric 
surfaces, the normal to the mating profiles, at the 
point of contact, must always pass through the same 
point on the common centerline.

 It follows that X0' is a common point on the tool tip and the 
trochoid of the gear.
 Since the shaper tool and the gear rotate in a constant speed 
ratio, and the shaper tool has rotated an angle, –ξ0, from its ref-
erence position, the gear rotation angle would have rotated an 
angle ξ, where 

   (52)ξ   (52)ξ = ±    (52) = ± ξ   (52)ξ0   (52)0
0   (52)0

n   (52)n   (52)

 To return the gear to its reference position, it is rotated an 
angle  –ξ about the gear center OG. After rotating the gear, the 
common point X0' will move to TX0 (see Fig. 7), which is a point 
on the trochoid. TX0 can be calculated as:

   (53)T   (53)TX0
   (53)

X0 = M(–   (53) = M(–ξ)   (53)ξ)(X   (53)(X0
   (53)

0' – O   (53)' – OG
   (53)

G)   (53))

 Note: In Equation 53, the origin of TX0 (see Eq. 53) is the 
center of the gear OG, not the center of the tool.

Determination of a Shaper-Tool-Generated Fillet Profi le.
The shaper tool discussed in this article can be divided into three 
zones (see Fig. 8):

1) Zone 1 is the portion of cutter profile that coincides with 
the outside diameter of the shaper tool. It starts from the 
outside diameter of the cutter on the y-axis, and ends at the 
end tangent point, E0. The tool profile in this zone gener-
ates the root circle of the gear. If the shaper tool has a full 
tip radius, Zone 1 reduces to a single point on the outside 
diameter of the tool.

2) Zone 2 is the elliptical tool tip starting at E0 and ends where 
the tool tip joins the main shaper tool profile (Zone 3).

3) Zone 3 is the main cutter profile that generates the involute 
profile on the semi-finished gear. 

 The shaper-tool-generated trochoid can be determined 
by calculating the conjugate points of the tool tip in Zone 2. 
Begin the calculation at E0 (see Fig. 8), and continue in small 
increments towards P0. The conjugate point of P0 will usually 
penetrate deepest from the surface of the involute profile (see 
Fig. 9).  Continue the calculation procedure until the trochoid 
intersects the involute tooth profile. Additional trochoid points 
can be calculated if desired.

Using Shaper Tool Algorithm 
to Calculate Fillet Profi le of a Hobbed Gear

 The tooth profi le of a shaper tool with an infi nite number of 
teeth will approach a rack. Naturally, if a shaper tool algorithm 
could handle an infi nite number of tool teeth, a hobbed trochoid 
could be accurately approximated. Unfortunately, the shaper 
tool algorithm presented in this article does not allow for an 
infi nite number of tool teeth. A shaper tool with a fi nite, but 
large number of teeth is permitted.
 To investigate the feasibility of approximating a hobbed 
trochoid with the shaper algorithm using a shaper tool with 
a large number of teeth, a numerical example was calculated 
using Example 3.1.5 of AGMA 918-A93 (Ref. 8). The number 

Table 1—Comparison of a Hobbed Pinion Fillet Profile (Ex. 3.1.5 - AGMA 918-A93) with Fillet Profiles 
Generated with 100-; 1,000-; and 10,000-Tooth Shaper Tools.

Description Gear data
Tool data

Hobbed 100T-Shaper 1,000T-Shaper 10,000T-Shaper

Normal diametral pitch in.–1 12 12 12 12 12

Number of teeth 35 NA 100 1,000 10,000

Reference normal pressure angle deg. 20 20 20 20 20

Reference helix angle deg. 22.109 22.109 22.109 22.109 22.109

Outside diameter
(or hob addendum) in. 3.3686 0.1205 9.2357 90.1882 899.7129

Reference normal circular thick-
ness in. 0.1501 0.1309 0.1309 0.1309 0.1309

Stock allowance in. 0.001 NA NA NA NA

Tool tip radius in. NA 0.0100 0.0100 0.0100 0.0100

Protuberance in. NA 0.0025 0.0025 0.0025 0.0025

Comparison
of the calculated fillet profile

Maximum difference between 
hobbed & shaped profiles in. NA NA 0.001901 0.000111 0.000011

Comparison
of form diameter (SOI)

Form diameter in. NA 3.040483 3.050692 3.041641 3.040600

Difference between hobbed & 
shaper-generated form diameters in. NA NA 0.010209 0.001158 0.000117



Figure 11—A 23-tooth internal spur gear model.
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Figure 10—Pinion trochoid (Ex. 3.1.5-AGMA 918-A93) generated with a hob 
and shaper cutters. 
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Figure 12—Polar angles of a trochoid point and an involute point.

of shaper tool teeth used were 100, 1,000 and 10,000. Table 1 
compares the distances between the trochoid curves generated 
with the shaper cutters and the one generated with a hob. The 
form diameters or the start of involute (SOI) (to be discussed in 
the section “Calculating Form Diameter,” below) based on the 
shaper tool were also compared to that generated with a hob.    
Figure 10 shows the trochoid curves superimposed on each other 
for a visual comparison.
 Table 1 showed that the maximum distance between the 
trochoid curves generated with a 100-tooth shaper cutter and 

the hob to be 0.001901". For a 10,000-tooth shaper cutter, 
the difference decreased to merely 0.000011". The difference 
between the shaper-generated and the hobbed SOI’s followed a 
similar trend. For the 100-tooth shaper cutter, the difference was 
0.010209" and for 10,000-tooth shaper cutter, 0.000117".
 The trochoid curves plotted in Figure 10 show the shaper-
generated trochoid converging to that of the hobbed one when 
the number of teeth in the shaper tool is large (e.g. 10,000). 

Applications for the Shaper Tool Algorithm
 The shaper tool algorithm can be used in computer-aided 
gear design and gear tooth modeling as shown in Figure 11. The 
algorithm is also useful for calculating the trochoid geometry 
for fi nite element or boundary element analysis. The following 
sections describe applications of the shaper tool algorithm in 
form diameter calculation and gear fi nishing stock analysis.

Calculating Form Diameter
 The form diameter or the start of involute (SOI) of a 
fi nished gear is the gear diameter where the trochoid joins or 
intersects the involute profi le. When the two curves intersect, 
two intersection points may appear to exist. The intersection 
point that is closer to the tip diameter of the gear is the SOI.  
The other “intersection” point is an artifi cial one, as the involute 
curve has already been truncated at the SOI. When calculating 
the SOI of a gear by iteration, it is important to make sure that 
the algorithm converges to the SOI. Plotting the trochoid and 
the involute profi le will provide a visual verifi cation that the 
iteration process converges correctly (see Fig. 12).
 The SOI can be calculated by comparing the polar angles of 
a trochoid point and an involute profile point, εtro and εinv respec-
tively, on the same gear diameter  (see Fig. 12) (Ref. 9). When 
the two polar angles become equal, the trochoid and involute 
points will coincide, and the gear diameter at the intersection 
point is the SOI. If the two polar angles are unequal, compare 
the polar angles for a new set of points at slightly larger or 
smaller gear diameter than the current one. Repeat the process 
until the two polar angles become equal.
  Table 2 compares the calculated SOI’s of the selected 
numerical examples in AGMA 918-A93 (Ref. 8) using the 
shaper tool algorithm presented in this article and those using 
other gear software. For hobbing examples, a 10,000-tooth 
shaper tool was used for the trochoid calculation. The calculated 
SOI’s using the shaper tool algorithm compared well with those 
using other software.

Checking Gear Finishing Stock
 For gears finished by grinding or shaving, the semi-finish-
ing tool is usually designed with protuberance that would gener-
ate an undercut in the gear. The protuberance provides stock for 
finishing operations. The form diameter (SOI) of the finished 
gear must be smaller than the start of active profile (SAP) of 
the gear when the gear meshes with the mate. The algorithm 
presented in this article can verify if a semi-finishing tool would 
provide sufficient finishing stock on the gear while keeping the 
SOI smaller than the SAP.
 Consider a helical gear set with the basic geometry given in 
Table 3. The initial pinion hob (A) design used the same stan-
dard reference pressure angle, 20°, as the part. Consequently, 
the calculated SOI (4.4873")  was larger than the SAP (4.4788").  

�
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Table 2—Comparison of the Form Diameters Calculated Using the Proposed Algorithm and Other Software.

Description Example 3-1-1 Example 3-1-3 Example 3-1-9

Gear data Pinion Gear Pinion Gear Pinion Gear

Gear type Spur Single helical Internal helical

Normal diametral pitch in.–1 5 5 6 6 9 9

Number of teeth 51 104 21 86 24 69

Ref. norm. press. angle deg. 20.0000 20.0000 20.0000 20.0000 25.0000 25.0000

Standard helix angle deg. 0.0000 0.0000 15.0000 15.0000 17.7276 17.7276

Normal circular thickness in. 0.326267 0.293451 0.322622 0.257794 0.217257 0.192968

Stock allowance in. 0.008000 0.008000 0.005300 0.005300 0.000000 0.000000

                Tool data

Tool type Hob Hob Hob Hob Shaper Shaper

Number of teeth 10,000 10,000 10,000 10,000 36 36

Addendum/Outside diameter in. 0.291300 0.291300 0.246000 0.246000 4.295000 4.476600

Normal circular thickness in. 0.314200 0.314200 0.261800 0.261800 0.102100 0.186000

Tool tip radius in. 0.067300 0.067300 0.068200 0.068200 0.020000 0.012000

Protuberance in. 0.009500 0.009500 0.008000 0.008000 0.000000 0.000000

Calculated form diameters

SOI–based on this paper in. 9.921823 20.204571 3.489356 14.525332 2.676943 8.225700

SOI–from other software in. 9.921617 20.204577 3.489576 14.525135 2.676900 8.225700

Difference in. 0.000206 –0.000006 –0.000220 0.000197 0.000043 0.000000

Table 3—Comparison of Form Diameters of a Pinion Generated with Normal Lead and Short Lead Hobs.

Description Unit
Oper. Cntr. Dist. 14.500 in. Pinion Hob A 

(normal lead)
Pinion Hob B
(short lead)Gear Pinion

Normal diametral pitch in.–1 4.0000 4.0000 4.1211

Number of teeth 93 18 10,000 10,000

Ref. norm. pressure angle (part or hob) deg. 20 20 14.5

Reference helix angle deg. 15.1560 15.1560 14.7003

Outside diameter (or hob addendum) in. 24.5840 5.4160 0.3372 0.1373

Reference normal circular thickness in. 0.3874 0.4812 0.3889 0.2419

Stock allowance per flank in. 0.0050 0.0050 NA NA

Tool tip radius in.
NA

0.0900 0.0900

Protuberance in. 0.0070 0.0070

Comparison of SOI and SAP

Start of active profile (SAP) in. 4.4788 4.4788

Form diameter (SOI) in. 4.4873 4.4550

SOI>SAP SOI<SAP

Therefore, hob (A) does not provide the required grinding stock 
while keeping the SOI below the required SAP. In order to push 
the SOI closer to the root diameter, a short lead hob (B) was 
designed. The hob had a 14.5° reference normal pressure angle. 
The calculated SOI based on the short lead hob (B) was 4.4550", 
smaller than the SAP. Hob B provided the required finishing 
stock with satisfactory SOI (see Fig. 13).

Conclusions
 A method for determining the shaper-tool-generated fillet 
profile (trochoid) was presented. The method is applicable to 
both external and internal helical gears. The algorithm is based 

on a class of shaper tool that has an involute main profile and 
elliptical tool tip in the transverse plane. However, the algorithm 
will also work for a shaper tool with other tool tip geometries, 
provided the coordinates and the normal of the tool tip profile 
are known.
 The shaper tool algorithm can also approximate the tro-
choid generated with a rack-type tool if the number of shaper 
tool teeth is large. The numerical examples showed that a 
trochoid curve generated with a 10,000-tooth shaper tool can 
approximate that generated with a hob with small error.
 The algorithm presented in this article does not require the 
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Appendix A—Derivation of Equations
The tangent and the normal of an arbitrary point on the 

shaper tool tip (Equations 20 and 44). The shaper tool tip 
considered in this article is circular in the normal plane and 
elliptical in the transverse plane, as shown in Figure A1. (Ref. 
A1). The coordinates of an arbitrary tool tip point X0 (related 
to the center of the tool tip) in the transverse plane can be cal-
culated as

   (A.1)

   (A.2)

where

ρ0  is the tool tip radius and
θXn0  is the auxiliary angle for point X0 measured clockwise 

from the horizontal axis.

Differentiating Equation A.1 and Equation A.2 with respect to 
the auxiliary angle θXn0 we get

   (A.3)

   (A.4)

The slope of the tangent at point X0 can be calculated as

  (A.5)
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SAP

Figure 13—Trochoid curves generated with a normal lead and a short-lead 
hob.

tool and the gear to have equal reference normal pressure angle.  
Consequently, a trochoid generated with a non-standard cutter 
such as a short lead hob can also be calculated.
 Examples for the form diameter (SOI) calculation and the 
finishing stock analysis were provided using the shaper tool 
algorithm presented.
 A computer program was developed using the algorithm 
described in this article. The calculated form diameters (SOI’s) 
for both external and internal gears compare well to those 
calculated with other gear software. An internal spur gear was 
used to verify the shaper tool algorithm.
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 Similarly, the slope of the profile tangent point, P0 (see 
the section “Center of tool tip on a shaper tool,” above), can be 
calculated as

   (A.6)

Taking an arc tangent on both sides of Equation A.6 completes 
the derivation for Equation 20.

   

 (A.7)

The normal at the given arbitrary point on a shaper tool tip is 
perpendicular to the tangent. Therefore, the slope of the normal, 
mX0 (see Eq. 44), is:

   (A.8)

 Generating pressure angle (Equation 39). The generating 
pressure angle is based on tight meshing of a shaper tool with 
a semi-finished gear. The derivation of the generating pressure 
angle equation is similar to the one given in 86 FTM 1 (Ref. 
A2).
 The following tool and gear data are given:

sb0 is the transverse base circular thickness, tool (in.);
rb0rb0r  is the base radius, tool (in.);
sbr is the transverse base circular thickness, semi-finished 

gear (in.). If shaping is the finishing operation, the 
base circular thickness for the finished gear should be 
used; and

rbr rbr r is the base radius, semi-finished gear (in.).

 The sum of the transverse circular thickness of the tool and 
the gear equals the circular pitch at the generating pitch circle.

   (A.9)

where
pg0   is the transverse circular pitch at the generating pitch 

circle;
sg0  is the transverse circular thickness at the generating 

pitch circle, tool (in.); and
sgr  is the transverse circular thickness at the generating 

pitch circle, gear (semi-finished) (in.).

 The circular thicknesses of tool and semi-finished gear at 
the generating pitch circle can be calculated as

   (A.10)

   (A.11)

where
rg0 rg0 r is the generating pitch radius of the shaper tool (in.);
rgr is the generating pitch radius of the semi-finished gear 

(in.); and
inv φg is the involute function of the generating pressure 

angle, φg.

Substituting Equation A.9 and Equation A.10 into Equation 
A.8 and dividing both sides of the new equation by 2rg0rg0r , we get

   (A.12)

using the following established relationships

   (A.13)

   (A.14)

where

pb0  is the transverse base circular pitch, tool (in.).

Substituting Equation A.12 and Equation A.13 into Equation 
A.11, we get

   (A.15)

Multiply both sides of Equation A.14, by 2rb0rb0r  and solve for
inv φg (Eq. 39)

   (A.16)
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