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Management Summary
In epicyclic gear sets designed for aeronautical applications, planet gears are generally supported by spherical roller 

bearings with the bearing outer race integral to the gear hub. This article presents a new method to compute roller load 
distribution in such bearings where the outer ring can’t be considered rigid. Based on the well-known Harris method, a 
modified formulation enables accounting for the centrifugal effects due to planet carrier rotation and the assessment of 
roller loads at any position throughout the rotation cycle. New model load distribution predictions show discrepancies 
with results presented by Harris, but are well-correlated with 1-D and 3-D finite element models (FEMs). These results 
validate the use of simplified, analytical models to assess the roller load distribution, rather than the more time-consum-
ing FEMs. The results of centrifugal effects due to planet carrier rotation on roller loads are also analyzed. Finally, the 
impact of the positions of the rollers relative to the gear mesh forces on the load distribution is shown.

Introduction
Epicyclic gear sets are power transmission systems that 

provide high capacity, power density and efficiency. As 
such, they are widely used in various aeronautical applica-
tions, including helicopter main gearboxes and turboprop-
power gearboxes, where weight is a critical performance 
criterion. In planetary and epicyclic gearboxes, high loads 
are transmitted via the planet carrier, which could result 
in misaligned contacts on gear meshes or planet bearings. 
Conventional gearbox designs thus include spherical roller 
bearings to support the planets on the planet carrier axles. 
These bearings can cope with misalignment angles up to 1.5° 
(Ref. 1) while providing good radial load-carrying capacity. 
A past study (Ref. 2) shows that bearings are a major source 
of failure in epicyclic gear sets. The authors also demonstrat-
ed that the optimization of planet bearings design can pro-
vide significant weight reduction, since the saving obtained 
on one planet is multiplied by the number of planets, which 
is generally greater than four. At the early gearbox design 
phase, it is thus essential to perform parametric studies in 
order to find the most optimized design for the planet bear-
ings. Spherical roller bearings in aeronautical, epicyclic gear 
sets are characterized by two main features:

1. For weight-saving reasons, the outer ring of these 
spherical roller bearings is usually integral to the planet gear 
hub, which is, in addition, made as thin as possible. The gear 
mesh forces induced by the sun planet and the ring planet 
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meshes are thus applied directly to the outer ring at localized 
points. The conventional assumption of rigid bearing outer 
ring submitted to a concentrated load is not valid in this 
instance. The outer ring must be considered deformable to 
determine the roller load distribution.

2. In epicyclic gear sets, the carrier is rotating while 
the ring is stationary (Fig. 1). This renders the planet bear-
ings’ kinematics rather complex, with the inner ring rotating 
around the gearbox main axis while the outer ring is rotat-
ing around the inner ring (planet carrier axle). The effect of 
the centrifugal loads induced by the outer ring weight could 
influence the roller load distribution, since the ratio of cen-
trifugal loads to accumulated radial gear loads can be as high 
as 20% for typical turboprop applications.

In this regard, several studies have been conducted to 
determine the influence of a deformable outer ring on the 
bearing loading. An analytical approach was proposed in 
1963 by Jones and Harris (Ref. 3) and also described in 
Harris (Ref. 4). The results showed that the outer race dis-
tortion modifies significantly the roller load distribution, 
compared with rigid outer race assumption; i.e., the number 
of loaded rollers increases and the most loaded roller is no 
longer located along the gear tangential direction but close 
to mesh force application. Effects of the bearing’s diametral 
and out-of-round clearance were also obtained with the same 
model by Harris et al. (Ref. 5). For this model, however, no 
finite element (FE) validation exists that could provide a rea-
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sonable approximation of the performance of the model.
Liu and Chiu (Ref. 6) proposed a model that accounts for 

inertial effects induced by planet carrier rotation and roller 
centrifugal forces. The main results showed the influence 
of the bearing diametric clearance on roller load distribu-
tion and fatigue life. Some discrepancies were also observed 
by the authors, as compared to the Jones/Harris study (Ref. 
3). Other authors have proposed an FEM approach as well; 
Drago et al. (Ref. 7) studied the effect of planet bearing outer 
race deformation on gear stresses using a 3-D FEM. The 
authors demonstrated that the optimization of roller loads 
can adversely affect gear stresses and that the planet bearing 
can’t be designed without accounting for them.

The model presented in this article is based on the Jones/
Harris approach (Ref. 3).

Initially, an example of the Jones/Harris model will be 
offered. A comparison of predicted loads and deformations 
with 1-D and 3-D FEMs will show discrepancies that can be 
explained by the assumptions made in the Jones/Harris equa-
tions.

Next, a new model is proposed that can solve non-
symmetric problems to account for centrifugal effects due to 
planet carrier rotation. The results analyze the effects of cen-
trifugal forces. The influence of roller positions with respect 
to mesh loads is also studied.

Analysis of State-of-the-Art Model
Jones/Harris analytical model description. In the Jones/

Harris approach, the outer ring flexibility is modeled as a 
thin elastic ring with a mean radius R and a section moment 
of inertia I (Fig. 1). The effect of gear teeth on ring stiff-
ness is ignored. The loads acting on the bearing outer ring 
are simplified as two equal and diametrically opposed loads 
representing, respectively, sun planet and ring gear planet 
meshes (Fig. 2). The mesh loads are assumed to act along the 
line of action and on the pitch radius R

P
.

These loads can be decomposed into elementary radial 
(F

s
) and tangential (F

t
) forces, and a moment (M) acting on 

the elastic ring mean radius R. The rollers are assumed to 
be equally spaced around the outer ring, with the first roller 
located along the O-x axis defined in Figure 3. The position 
of the roller number j is characterized by an angle y

i
 and the 

reaction force of this roller on the outer ring is noted Q
i
. In 

summary, the planet gear outer ring is submitted to mesh 
forces F

s
, F

t
, M and roller contact loads Q

i
.

The system studied is thus symmetric around the O-x 
axis. This makes it impossible to study the influence of 
centrifugal effects that introduce an asymmetric force act-
ing along the O-y axis, or to study the load distribution with 
arbitrary roller positions. The radial elastic ring deflection 
at point i—due to a load P—is expressed by means of influ-
ence coefficients         for which detailed expressions are not 
given in this paper but can be found in References 3–4.
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It is worth noting that the elastic ring deflection only 
takes into account the bending in the ring—excluding the 
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Figure 1—Loads acting on a planet.

Figure 2—Simplification of mesh loads.

Figure 3—Forces acting on the planet gear outer ring.
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tension or shear. The validity of this approximation for 
rings such as the planet gears will be illustrated later in this 
paper. The total radial displacement at any location i is thus 
obtained by combining the effects of all elementary loads 
which yields:

  
(2)
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Using the Lundberg/Palmgren relationship, a contact 
condition can be defined at any roller j as:

  

(3)

Where P
d
 is the diametral clearance; b = 3/2 for point 

contacts and b = 10/9 for line contacts.

Combining Equations 2 and 3 and writing the force equi-
librium along the O-x axis yields the following system of N 
+ 1 equations, where N is the number of rollers:

  

(4)

With,
 t

j = 0.5 for y
j
  = 0° or y

j
 = 180°

 t
j
 = 1 in all other cases

As suggested by the authors (Refs. 3–4), the non-linear 
system can suitably be solved by using the iterative Newton 
Raphson method (Ed.’s note: the “Newton-Raphson” meth-
od is a root-finding algorithm that uses the first few terms 
of the Taylor series of a function f(x) in the vicinity of a sus-
pected root. A “Taylor series,” developed by nineteenth-cen-
tury mathematician Brook Taylor, is an infinite sum giving 
the value of a function f(z) in the neighborhood of a point a 
in terms of the derivatives of the function evaluated at a).

Remarks on the model formulae. In the Jones/Harris 
model, the symmetric system is solved on a half ring. 
Therefore, the t

j
 coefficients were introduced in the force 

equilibrium equation (eo) to take into account half of the 
loads at roller positions y

j
 = 0° and y

j
 = 180°; i.e., solving:

  
(5)

In displacements equations (e
i
), the displacement at any 

point i of the ring is calculated by considering a pair of roller 
loads Q

j
 symmetric with respect to the O-x axis (Fig. 4-a). It 

follows that when the effect of the force of Roller 1 is taken 
into account, it should be divided by two and not considered 
a pair of loads Q1, as shown in Figure 4-b.

A modified system of equations is proposed to solve this 
problem by introducing the coefficient tj in the term:

  
(6)
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Figure 4—Jones/Harris model assumption of symmetric 
roller loads.
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Figure 5—Example of 1-D-beam FEM.
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Figure 6—Example of 3-D FEM.
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It yields:

  
(7)

With,
 t

j = 0.5 for y
j
  = 0° or y

j
 = 180°

 t
j
 = 1 in all other cases

Comparison of analytical models to FEM. Two differ-
ent FEMs have been built in order to validate the results 
obtained with the initial Harris model and the proposed, 
modified analytical model.

The first FEM uses one-dimensional finite elements (Fig. 
5):
•	The ring is modeled as an assembly of beam elements  

 accounting for tension, bending and shear effects.
•	The roller contacts are modeled as non-linear springs  

 with a force-deflection relationship introduced via tabu- 
 lated data following the Lundberg/Palmgren contact  
 deflection law. This force deflection law accounts for the  
 diametric clearance of the bearing (Eq. 3).

The second FEM uses 3-D (Ref. 3) finite elements (Fig. 6):
•	The ring is meshed with 3-D linear hexahedric and pen- 

 tahedric elements.
•	The roller contact force deflection is described in the  

 same way as in the previous 1-D FEM. In addition, rigid  
 body elements connect the outer race nodes to each roll- 
 er spring in order to distribute the contact load along the  
 race width.
•	The gear mesh loads are assumed to be uniformly dis- 

 tributed across the gear width.
The example used in this article is based on the data pre-

sented in Table 1. 
Figure 7 displays the roller loads for the initial Harris 

model, the 1-D and 3-D FEM, and the modified Harris 
model according to Equation 5. The abscissa represents the 
roller number according to convention given in Figure 2. 
The plots show good correlation between the 1-D FEM and 
the modified Harris model for all rollers, whereas the initial 
Harris model predicts a significantly lower contact load for 
Roller 1 and higher loads for the other rollers. This result 
confirms that the missing term in the Jones/Harris model has 
a strong influence on the roller load distribution and must be 
taken into account.

The agreement between the 1-D FEM and the modified, 
analytical model also confirms that neglecting the tension 
and shear effects in the elastic ring deflection formula of the 
Harris analytical model is a valid assumption.

Finally, the plot in Figure 7 shows that the roller load 
distribution given by the 3-D FEM is similar to that of the 
1-D FEM and the modified Harris model. In this case, the 
contact loads are greater, but are distributed on a smaller 
number of rollers since Rollers 5 and 9 are not loaded for 
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Figure 7—Roller load distribution for several models.
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the 3-D FEM. These small differences demonstrate that the 
impact of tooth stiffness and 3-D effects do not play a sig-
nificant role in the load distribution.

Figure 8 illustrates the ring radial displacement for the 
modified analytical model and the 1-D and 3-D FEMs. The 
FEM results appear to be in agreement, while the predicted 
displacements differ significantly from the analytical model. 
The area of greatest difference corresponds to the unloaded 
zone of the bearing (Rollers 6–8)—which explains why there 
is no impact on the load distribution, as observed in Figure 7.

These differences are believed to be a consequence of the 
effects of tension and shear, which are not taken into account 
in the analytical model.

The effect of how the gear mesh force is applied to the 
model has been investigated; the 3-D FEM has been run for 
two configurations:

•	 The reference model considers the gear mesh force as  
 unique, applied at the gear pitch diameter and along  
 the line of action.

•	 The second model accounts for the actual load appli- 
 cation points on the different teeth in contact. In this  
 case (Fig. 9), the contact is assumed to be distributed  
 on three teeth (HCR gears).

continued

Table	1—Sample	Data
Number	of	rollers	per	row 12

Number	of	rows 1

Roller	diameter 12.5	mm

Roller	length 40	mm

Bearing	clearance 0	mm

Roller	contact	angle 0˚

Outer	ring	section	moment	of	inertia 3,081	mm4

Radius	of	outer	ring	neutral	axis 70.3	mm

Gear	pitch	radius 79.5	mm

Gear	mesh	tangential	force 27,096	N

Gear	mesh	separation	force 9,862	N

Gear	moment 249,372	N-mm
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concerned.
The results from Figures 7–10 validate the use of a 

simplified analytical model in the prediction of roller load 
distribution. This is an important result since the analytical 
models can be fast to run and enable performance of para-
metric studies in a short time, which is not the case with 1-D 
or 3-D FEMs.

Improved Analytical Model
Model description. In the preceding sections, the Jones/

Harris model was modified to include a missing term in the 
equations that appeared to be crucial in the analysis of load 
distribution in planet gear bearings. But this model is based 
on the assumption that the problem studied is symmetric 
about the O-x axis. This prevents, in particular:
•	 Accounting for the centrifugal force F

c
 induced by  

 planet carrier rotation that is directed along the O-y axis.  
 This new force will increase roller loads on the lower  
 part of the bearing while decreasing the load on the  
 opposite side.
•	 Studying the roller load distribution with an arbitrary  

 position of the rollers with respect to the O-x, O-y axis.
The improved model presented below enables study of a 

dissymmetric problem by considering the roller loads Q
jk
—

not coupled symmetrically by pairs, but independent—one 
from the other. In order to define the radial deflection of 
the ring at any point i, located by the angle y

i
 and induced 

by a single force Q
j
 defined by the angle y

j
, the influence 

coefficients developed by Jones/Harris (Ref. 3) for the load 
Q1 were used. Indeed, these influence coefficients give the 
deflection at any point i due to a single load located by the 
angle y1 = 0.

A local basis is created for each load application point 
Q

j
, in which the O-x axis corresponds to the O-j direction. 

In this local basis, the point i2 at which the deflection needs 
to be calculated is defined by an angle y

i2 (Fig. 11). In this 
local frame, the load Q

j
 is equivalent to the load Q1 in the 

initial frame.
Therefore the influence coefficients given by Jones/Harris 

for Q1 can be used in this basis, accounting for the relative 
angle y

i2. The value of this angle is given by Figure 12 and:
  

(8)

Using influence coefficients of Reference 3, the deflec-
tion calculation is given by:
  

(9)

Where          represents the influence coefficient defined 
for Q1 (Ref. 3), but with the change of basis defined by the 
angle yi2.

Once this deflection equation is defined for the elastic 
ring, the system of equations can be defined as follows:
•		The force equilibrium equation along the O-x axis  

 remains the same as in the original model.
•		When the planet carrier centrifugal force F

c
 is consider 

Figure 10 shows that the roller load distribution obtained 
with both models is very similar. A precise description of the 
tooth load distribution on the planet gear is thus not neces-
sary as far as the assessment of the roller load distribution is 
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Figure 9—Influence of the gear mesh force application.
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 a new equation is necessary to ensure the force equilib 
 rium along the O-y axis. Moreover, a new rigid-body  
 displacement u0b

 along the O-y axis needs to be intro- 
 duced.
•		The equality of displacements on all ring points includes  

 the new deflection (Eq. 9) and the contribution of the  
 rigid body displacement u0b

.
It yields the following set of N + 2 equations:
  

(10)

Analysis of the effect of centrifugal force. The planet 
gear bearing defined in Table 1 is used to illustrate the 
effects of the centrifugal force induced by a planet carrier 
rotational speed of 1,500 rpm. The planet gear outer ring 
weight is equal to 2.38 kg and its center is located at a dis-
tance of 150 mm, relative to the planet carrier axis of rota-
tion. In this calculation, the gear mesh forces and moment 
are: F

s
 = 6,680 N; F

t 
= 18,553 N; M = 168,908 N-mm.

Figure 13 shows a plot of the roller load distribution for 
the analytical model previously described in this paper, and 
for a 1-D FEM. Both curves are in agreement—thus validat-
ing the new analytical model.

The roller load distributions are no longer symmetric 
with respect to the O-x axis—i.e., Rollers 1 and 7. The roll-
ers located at the radial outer part of the bearing (Rollers 
1–6) carry a lower load than those located at the inner part of 
the bearing (Rollers 7–12). The difference in the maximum 
loads carried by each area of the bearing is equal to 18%—
which is significant. The effect of centrifugal force shall 
therefore not be neglected in the design phase—both for 
the sizing to contact pressure and to the sliding in unloaded 
zones.

Influence of roller position relative to the gear mesh. 
Due to the natural symmetry of a bearing, the system returns 
to an identical state at every      cage rotation. In the Jones/
Harris model (Ref. 3), an important assumption is that Roller 
1 is by necessity located along the O-x axis—at angle y1 = 0. 
Between                               the original Jones/Harris model 
cannot predict the load distribution.

This new model makes possible the modeling of the dif-
ferent roller position configurations by introducing a shift 
angle in the calculation of y

i2. This possibility is illustrated 
in the numerical application shown in Table 2.

Figure 14 shows the roller load distribution for the ini-
tial position with an 11.43° angular shift. The main impact 
is seen on the rollers close to the gear mesh; i.e., Rollers 
5–6 for the ring gear mesh and Rollers 13–14 for the sun 
gear mesh. This is due to the sudden change in the outer 
ring deformed shape in the vicinity of the mesh forces and 
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Figure 11—Definition of the local frame at Qj.
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Conclusion
In the first part of this article, a missing term in the 

Jones/Harris model has been identified; the corrected system 
of equations showed correlation with 1-D and 3-D FEMs. In 
particular, the practice of modeling precisely the gear teeth 
and the tooth load distribution has a negligible effect on the 
prediction of roller load distribution. The ability to use sim-
plified, analytical models with reasonable confidence in the 
result is important, since designers generally need a fast tool 
to perform parametric studies at an early stage of the design. 
A limitation in the use of simplified models is the fact that 
they can’t assess the stress state in the outer ring as precisely 
as do FEMs; in certain cases the stresses might be the limit-
ing factor in the design of the outer ring.

A new model has also been presented that enables the 
study of dissymmetric systems—such as the ones that take 
into account planet carrier rotation centrifugal effects or that 
simulate arbitrary roller positions. Centrifugal effects tend 
to create asymmetric load distribution in the bearing, with a 
load increase in the sun gear mesh area. The position of the 
rollers relative to the gear mesh forces has also shown to be 
a critical parameter, since in this area the outer ring deforma-
tion is maximal.

The model improvements will be directed towards the 
integration of rollers’ individual centrifugal loads that may 
affect the load distribution in the bearing. In addition, efforts 
will be made to include in the model the assessment of the 
planet rim stresses. This latter improvement should allow 
optimization of the rim thickness as a function of rim stress-
es and roller load distribution.
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moment, which affects the bearing clearance and thus the 
contact load (Fig. 15). The consequence is a significant 
increase in the maximum roller load from 5,867 N to 7,689 
N (+ 31%). This high roller load variation could be lowered 
by stiffening the outer ring.

Figure 15—Outer ring—deformed shape—and correspond-
ing roller loads.
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Table	2—Shift	angle	in	the	calculation	of	yi2

Number	of	rollers	per	row 17

Number	of	rows 2

Roller	diameter 16	mm

Roller	length 16	mm

Bearing	clearance 0.03	mm

Roller	contact	angle 10.9˚

Outer	ring	section	moment	of	inertia 2,375	mm4

Radius	of	outer	ring	neutral	axis 70.49	mm

Gear	pitch	radius 79.5	mm

Gear	mesh	tangential	force 27,096	N

Gear	mesh	separation	force 9,862	mm

Gear	moment 244,210	mm
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Figure 14—Effect of roller positions on the roller load distri-
bution.
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