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Introduction
An efficient design with high power density 
characterizes a modern transmission, which 
leads, in many ways, to optimized construc-
tions. Reaching a high utilization of mate-
rial strength requires an exact prediction of 
occurring stress under given load carrying 
capacity to guarantee sufficient endurance.

Practically applied standardized meth-
ods to evaluate the load carrying capacity 
(AGMA 2101 (Ref. 1), DIN 3990 (Ref. 3), 
ISO 6336 (Ref. 4)) contain formulas to cal-
culate the tooth root stress of standard pro-
files. At the same time, optimized profiles are 
designed that use more and more reserves 
of load carrying capacity (e.g. — optimized 
fillets, special tooth profile). Widely avail-
able FEM-calculations provide precise stress 
results, but are still laborious to apply for tooth contact analysis. 
Detailed, but fast and easy to use calculation methods are neces-
sary to evaluate different types of tooth profiles in consideration 
of freely designed fillets. In addition, a more detailed analysis 
of standard tooth root profiles is required to increase power 
density. Also in many cases, expecting the maximum load and 
critical root stress at the tangent point of 30° (DIN3990 (Ref.3), 
ISO 6336 Ref. 4)) or the Lewis-Parabola (AGMA (Ref. 1) is not 
always right (Ref. 2.)

This paper shows a method to calculate the occurring tooth 
root stress for involute, external gears with any form of fillets 
very precisely within a few seconds. The following parameter 
variation uses a 2-D boundary element model to receive the 
notch stresses of the fillets. These calculated stresses are linked 
to a high-quality analytical tooth contact analysis to consider the 
exact relations of the gear mesh. This algorithm is implemented 
in the FVA software RIKOR (Refs. 5–6). The introduced model 
also allows a calculation of the occurring tension and compres-
sion stresses along the whole fillet for different mesh positions.

Calculation Method
The following section describes the calculation method that 
extends the standardized method of ISO 6336 (Ref.4).

Declaration of supporting points. Initially, a declaration of 
the supporting points of the tooth flank and the field of action is 
necessary to describe the calculation method.

Figure 1 shows a definition of these supporting points for 
the plain normal section, and the plain longitudinal view of the 
tooth flank — including the root.

To illustrate the form of the fillet, it is most suitable to use a 
normal section of the tooth. For a spur gear, the normal and 
transverse sections are the same, located in a plane. But the 
normal section of a helical is curved in a 3-D area. To represent 
to actual fillet form precisely, a plain normal section is used. 
For later valuation, the plain normal section of the contour is 
indexed with a number of supporting points k (amount = nPPT). 
At every point k of the contour, it is possible to define a num-
ber of supporting points l (amount = nDPT) in normal direction 
to the inside of the gear material. For the analytical model, the 
tooth width is discretized in a number of supporting points i 
(amount = nTPT). The mesh width is also discretized in a cer-
tain amount of supporting points j (amount = nMPT), as it is not 
always the same size as the tooth width.

Figure 1 also shows the definition of a local coordinate system 
(x,y,z).

Influence function βF of tooth root bending moment. To con-
sider the tooth width and the bending lever, which varies in its 
longitudinal direction for helical gears, an influence function 
βF is introduced that is based on investigations of Umezawa 
(Ref. 8).

This function describes the impact of a local tooth force at j 
to the bending moment, which occurs in i (compare to Eq. 1). 

Figure 1 � Definition of supporting points for a tooth and a contact line.
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When solving this function for a certain amount of supporting 
points and combining it with the local bending lever, a precise 
analytical calculation of the local bending moment (helical 
gears) is given.

βFi,j = ( e–0.5 * ( z(i)–z(j)
σα ∙ h )2 )∙(h0) + SLi,j + SRi,j√2π ∙ σα  h

βF [-] Influence function of tooth root bending moment
i [-] Index of supporting point (tooth width)
z [mm] Coordinate in lead direction
h0 [mm] reference tooth height (1mm)
σα [-] Influence function of pressure angle
j [-] Index of supporting point (mesh width)
h [mm] Tooth height
sl/r [-] Influence of edge
Equation 1: Calculation of the Influence function βFi,j at support-
ing point i caused by a load acting on supporting point j based 
on Umezawa (8)

Tooth root bending moment Mi. While solving the influence 
function βF for every discretized load on the contact line, the 
local tooth root bending moment Mi can be solved at every sup-
porting point i (compare to Eq. 2). The local bending lever hF is 
referenced to the boundary point of the 30°-tangent and the fil-
let. This method also allows the consideration of the exact load 
distribution.

Mi =
nMPT

βFi,j ∙ hFj ∙ pFj∑
j=1

Mi [N ∙ mm] Tooth root bending moment at supporting point i
i [-] Index of supporting point (tooth width)

βF [-] Influence function of tooth root bending moment
pF [N] Local tooth force

nMPT [-] Number of supporting points (mesh width)
j [-] Index of supporting point (mesh width)

hF [mm] Local bending lever to 30°-tangent
Equation 2: Calculation of the tooth root bending moment Mi at 
supporting point i with certain load distribution

Figure 2 shows the impact of a single load (left figure) on the 
tooth bending moment. Also shown is the effect of a certain 
load distribution and bending levers (right figure) on the occur-
ring tooth bending moment and its allocation.

Tooth root stress σi. Referring the bending moment to the 
bending section leads to the nominal tooth root stress of an 
equivalent beam (compare to Eq. 3). To consider the fillet it is 
possible to use the stress correction factor according to DIN 
3990 (Ref. 3) or rather ISO 6336 (Ref. 4), which is referred to 
every loading point j. The calculated tooth root stress 
gives a maximum value without a specific declara-
tion of the location of this stress. This stress correc-
tion factor does not allow considering any other root 
geometries than trochoids. The calculation of, e.g., 
grinding notches, asymmetric or otherwise opti-
mized fillets is not possible. To determine the stress 
correction factor for such root geometries, it is neces-
sary to calculate it with a numerical method.

Figure 2 � Illustration of the influence function βF, local bending lever hF and a 
certain load distribution pF.

σi =
1 ∙

nMPT

βFi,j ∙ hFj ∙ pFj ∙YSj∑Wb j=1

σi [N/mm2] Tooth root stress at supporting point i
i [-] Index of supporting point (tooth width)

βF [-] Influence function of tooth root bending moment
pF [N] Local tooth force
Wb [mm3] Bending section modulus at 30°-tangent

nMPT [-] Number of supporting points (mesh width)
j [-] Index of supporting point (mesh width)

hF [mm] Local bending lever to 30°-tangent
YS [-] Stress correction factor
Equation 3: Calculation of the tooth root stress σi at supporting point 
i with the exact load distribution pFj and the stress correction factor 
YSj according to DIN 3990 (3) and ISO 6336 (4)

Local stress correction factor YSj,k,l. To allow the calculation of 
local stress correction factors for any fillet forms, it is conve-
nient to use a numerical method. A 2-D numerical method is 
adequate to fulfill this requirement, while it also calculates very 
fast. Within this paper, a 2-D boundary element method (BEM) 
is used (Ref. 5).

The local stress correction factor YSj,k,l calculates for every 
location of the acting force j, along the fillet k, and also in nor-
mal direction to the inside of the gear l (surface tension also 
possible). It correlates to the quotient of a local tooth root stress 
at the investigated location and the reference bending stress at 
the equivalent beam (bending lever of acting force to the 30°tan-
gent) (compare to Eq. 4).

This reference is necessary for this calculation method, but 
does not influence the calculation accuracy. A reference to 
every other tangent is possible as only the distribution between 
local stress correction factor and root bending moment would 
change, while their product would stay the same. The reference 
of the local stress correction factor is a certain load acting point 
j. Therefore, the stress-increasing effect of the fillet is constant 
along the mesh width for a certain load acting position.

YSj,k,l
 =

σ2Dj,k,l
σ2D,ref,j

YSj,k,l [-] Local stress correction factor
k [-] Index of supporting point (profile)

σ2D [N/mm2] Local tooth root stress with 2D numerical method
j [-] Index of supporting point (mesh width)
l [-] Index of supporting point (depth)

σ2D,ref [N/mm2] Reference bending lever to 30°-tangent
Equation 4: Calculation of the local stress correction factor YSj,k,l
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Local tooth root stress σi,k,l. With exchanging the standardized 
stress correction factor with the local and numerical determined 
stress correction factor, it is possible to calculate a local tooth 
root stress at any location of the fillet (Eq. 5). This method also 
allows the prediction of the location of the highest occurring 
root stresses. With the requirement of very low calculation time, 
it would also be convenient to use this algorithm for optimiza-
tions. Within this paper it is used to compare the results to the 
standardized approach of ISO 6336 (Ref. 4).

σi,k,l =
1 ∙

nMPT

βFi,j ∙ hFj ∙ pFj ∙YSj,k,l∑Wb j=1

σi,k,l [N/mm2] Tooth root stress at supporting point i
i [-] Index of supporting point (tooth width)
k [-] Index of supporting point (profile)
βF [-] Influence function of tooth root bending moment
pF [N] Local tooth force
Wb [mm3] Bending section modulus at 30°-tangent

nMPT [-] Number of supporting points (mesh width)
j [-] Index of supporting point (mesh width)
l [-] Index of supporting point (depth)

hF [mm] Local bending lever to 30°-tangent
YS [-] Stress correction factor
Equation 5: Calculation of the local tooth root stress σi,k,l at 
supporting point i, profile point k and depth point l with the exact 
load distribution pFj and the local stress correction factor YSj,k,l

Parameter Variation and Results
The calculation method, introduced above, allows doing exten-
sive parameter variations and studies and comparing the results 
to, e.g., standardized methods. In the following, a parameter 
study is shown, which investigates different trochoid fillet 
geometries and compares them to the corresponding results of 
ISO 6336 (Ref. 4). The variations are made with very stiff shafts 
and bearings, as the influence of these machine elements are not 
in focus for these calculations. The influence of the mesh stiff-
ness is considered for these calculations.

Varied parameters. There are different possibilities to change 
the fillet geometry. The presented calculation study shows a 
variation of the profile shift x (–1 ≤ x ≤ 1) and the tooth height 
ha (influences contact ratio –1 ≤ εα ≤ 1). A different tooth height 
leads to changing contact ratio and, therefore, a variation of the 
critical contact line that is responsible for the maximum tooth 
root stress. The sum of profile shift is zero for every case to keep 

Figure 3 � Tooth contours of varied parameters.

Table 1 � Main geometry and 3-D model of investigated gear stage
3-D Model Geometry Gear 1 Gear 2 Unit

Module 1 mm

Pressure angle 20 °

Helix Angle 10 –10 °

Number of Teeth 42 84 -

Sum of profile shift 0 -

Tip Diameter varies mm

Root diameter varies mm

Tooth width 18 18 mm

Center distance 63.97 mm

Contact ratio varies -
Overlap ratio 

(nominal) 1.0 -

Table 2 � Tool data and plain normal section of the investigated gear 
stage

Plain normal secion of gear 1 Tool Data Gear 1 Unit
Add. coeff. basic rack 1.5 -

Ded. coeff. basic rack 1.6 -

Tip radius 0.25 -
Generating profile shift 

of this case
0

(varies) -

Protuberance angle - °

Depth of protuberance - mm

Figure 4 � Relation of maximum tooth root stress σi according to ISO 6336 
(Ref. 4) to maximum local tooth root stress σi,k,l according to 
Eq. 5.

Figure 5 � Location (in ° of tangent) of the maximum local tooth root stress 
σi,k,l according to Eq. 5.
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the same center distance. The plane normal sections of the dif-
ferent investigated tooth contours are shown (Fig. 3), while the 
focus of the calculations lies on the pinion (z = 42).

Table 1 shows the 3-D model with the geometrical data of the 
gears, and Table 2 shows the tool data for gear 1 of this model.

Influence of the contact ratio. Figure 4 shows the relation of 
the maximum tooth root stress according to ISO 6336 (Ref. 4) 
to the maximum tooth root stress according to Equation 5. A 
result above one means that the calculation according to ISO 
6336 (Ref. 4) gives higher results as the local method of this 
paper. A main result is that for increasing contact ratios, the 
standardized method calculates very safely. Schinagl (Ref. 7) 
investigates the influences of the profile and contact ratio within 
his dissertation, while his results support this consideration.

Location of maximum tooth root bending stress. The method 
also allows an investigation of the location of the maximum 
occurring stress. The reference stress of the corresponding beam 
is at the 30°-tangent. Figure 5 shows the location (in ° of the 
tangent) of the maximum tooth root stress, depending on the 
profile shift and the contact ratio (critical contact line). With 
an increasing profile shift, the radius of the fillet decreases. The 
critical tension stress gets shifted nearer to the center of the 
tooth root fillet, which may lead to a more critical alternating 
load.

Further Calculation Possibilities
The discussed geometries of the variation are focusing on tro-
choid fillet geometries. Of course, the numerical method is not 
restricted to certain root geometries. Therefore, there are differ-
ent calculations imaginable that are introduced in the following 
section. The pros and cons of each fillet geometry — especially 
of optimized forms — are not discussed.

Calculation of grinding notches. For case hardened gears, 
it is common to manufacture them with a certain amount of 
protuberance and finish the gears with a grinding process after 
hardening. An unfavorable behavior can be the occurrence of 
grinding notches. To evaluate these fillets forms there are differ-
ent approaches, such as the investigations of grinding notches 
by Wirth (Ref. 9). To determine an exact or even measured 
contour, the approaches, which only describe the notches or 
protuberances analytically, are not promising. More productive 
is an investigation of the exact fillet form with numerical meth-
ods. Figure 6 shows a nominal contour compared to one with 
a grinding notch. An important point is to be able to evaluate 
these kinds of manufacturing deviations and to be able to react 
in an adequate amount of time without having to run exten-
sive tests. Figure 8 shows a calculation of a gear with a grinding 
notch (normal section of the contour and tangential stresses); 
the 3-D illustration is shown for one tooth within Figure 9.

Figure 6 � Nominal contour (outer, blue contour) and 
contour with grinding notch (inner, red contour).

Figure 7 � Nominal contour and asymmetric tooth root contour.

Figure 8 � Illustration of the tangential stresses in plain normal section of 
protuberance (upper figure) and grinding notches (lower figure) 
on local tooth root stresses.

Figure 9 � Illustration for one tooth of 3-D calculation of local tooth root 
stress σi,k,l (along the certain tangent in N/mm2) for full contact 
line of a helical gear (compression side is covered by the tooth 
flank)
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Calculation of asymmetric root geometries. The 
critical tooth root stress according to DIN 3990 
(Ref. 3) and ISO 6336 (Ref. 4) is represented as a ten-
sion at the side of the acting load. Therefore, it is 
possible to reduce the radius of the tooth root at the 
compression side in order to allow a wider radius 
at the side of the tension. An example of such an 
asymmetric root contour is shown (Fig. 7). To evalu-
ate this sort of optimization it is possible to use the 
introduced algorithm. The distribution of the root 
stresses can be seen (Fig. 10) for a load acting at both 
sides.

Conclusion
This paper introduces an algorithm to calculate pre-
cisely and quickly the local tooth root stress for 
involute external gears with any fillet geometry, and 
under consideration of the exact meshing condition. 
The formulas for this method and an extensive varia-
tion are introduced that show deviations between the simpler stan-
dardized approach and the presented local approach. A main result 
is that the standardized method according to ISO 6336 (Ref. 4) 
calculates the occurring maximum tension stress very safely for 
high contact ratios. By using this method the material utilization 
can be increased by up to 50%. The location of the maximum tooth 
stress deviates significantly for different profile shifts. Furthermore, 
examples of calculations for any root geometries are shown. On the 
one hand, with optimized fillet forms it is possible to decrease the 
occurring stresses up to 30%. On the other hand, an evaluation of 
manufacturing deviations is possible without test runs. All exam-
ples are calculated without the influences of shafts and bearings, 
which would lead to more unequal load sharing.

Future investigations should also cover these influences, as an 
unequal load sharing does not lead to an unequal stress distribution 
within the same amount. In addition, the introduced algorithm is 
suitable for root optimizations with any fillet geometry. To discuss 
and exercise this fact, further investigations are necessary. 

For more information. Questions or comments regarding this 
paper? Contact Tobias Paucker at paucker@fzg.mw.tum.de.
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Figure 10 � Asymmetric root geometry with load acting at sharp (right figure) and 
wide radius (left figure).
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