
Material Selection and Heat Treatment
Part II

Metalurgical Characteristics
National Broach & Machine Division of Lear Siegler

Mt. Clemens, MI 48044

(This article is a continuation, Part I was presented in the
July IAugust 1985 issue of GEAR TECHNOLOGY.)

Metallurgical Characteristics *
The approximate tensile strength of any steel is measured

by its hardness, Table 1. Since hardness is determined by both
chemical composition and heat treatment, these are the two
important metallurgical considerations in selecting gear steels.

Chemical Composition
Hardenable gear steels are of two types: through-harden-

able or case-hardenable. Thrcugh-hardenable steels contain
alloying elements and usually have carbon content ranging
from about 0.40 to O.SO-percent to give the desired hardness.
Steels for case-hardening mayor may not contain alloying
elements, but have lower carbon content (usually less than
O.2S-percent). The lower carbon content permits development
of high surface hardness while retaining a softer, more duc-
tile core.

An alloy steel. Table 2, is a type to which one or more
alloying elements have been added to give it properties that
cannot be obtained in carbon steel. Chromium is one of the
most versatile and widely used alloying elements. It produces
corrosion and oxidation resistance,and induces high hard-
ness and wear resistance ..It also intensifies the action of car-
bon, increases the elastic limit, increases tensile strength, and
increases depth of hardness penetration.

Nickel increases shock resistance, elastic limit, and tensile
strength of steel. Nickel steels are particularly suitable for
case-hardening. This results in their frequent use for aircraft
gears where strength-to-weight ratio must be high. The
strong, tough case obtained with nickel steels combined with
good core properties provides exceptional fatigue and wear
resistance. Simplified hardening procedures and low distor-
tion during heat treatment result from lower transformation
temperature ranges and the relatively small difference between
case and core transformation temperatures.

Molybdenum increases hardenability of steels and has a
significant effect on softening of steels at tempering temper-
atures. It markedly retards softening of the hardened marten-
site at tempering temperatures above 450F.

"Implemented and reviewed by Harold A. Maloney, plant metal-
lurgist, Clark Equipment Co.
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Vanadium is used as an alloying element in steels for two
reasons ..First is the effect on grain size at elevated tempera-
tures. Vanadium stabilizes the fine grain structure of
austenitized steels and permits retention of excellent ductil-
ity and impact resistance while developing high tensile and
yield strengths. The second reason is the ability to form car-
bides which remain stable at elevated temperatures.

Hardenability is the property of a steel which determines
the depth and distribution of the hardness induced by quench-
ing. The higher the hardenability of a steel, the greater the
depth to which the steel can be hardened and the slower the
quench which can be used. Hardenability should not be con-
fused with hardness or maximum hardness which can be ob-
tained by heat treatment, since that depends almost entirely
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Table 1 - Approximate Tensile Strength 'Dr
Equivalent Hardness Numbers of Steel

Table 2 - Basic AISI and SAE Numbering
System 'or Steels
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MOLYBDENUM STEELS
M0 0.20 and 015
MD 0.40 andl 0.52

CHROMIUM·MOLYBDENUM STEELS
Cr 0.50, 0.10 and 0.95; M'o 0.12, 0.20, 0.25 Ind 0.30

NICKEl·CHROMIUM·MOlYBDENUM STEELS
Hi 1.82; Cr 0.'50 and 0.10; Mo 0'.25
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and 25.00
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L dlOOl1lS ladedl Still

September/October 1985 45

Non· "I()I" Ittl/ numarl or IlthIrs In bllll Indlclt .. tIIrbon percetll.,,; 1_.
1040 Indlca'" 0.40 peretnl carbon.

From SAC Iron and Stee' Handbook Supp'emetl' 30



Fig. 1-Relationship of maximum quenched hardness of alloy and carbon
steels to carbon content. Courtesy Republic Steel Corp,

Fig, 2-Comparative hardenabitity of Q,20-percent carbon alloy steels.
Courtesy Republic Steel Corp,

Fig. 3 -Comparative hardenability of 8600 Alloy Steels. Courtesy Republic
Steel Corp,

on carbon content, Fig. 1. Also, section thickness has con-
siderable influence on the maximum hardness obtained for
a given set of conditions; the thicker the section, the slower
the quench rate will be. Variations in test bar hardenability
curves for various 0.20-percent carbon and alloy steels is
shown in Fig. 2. Similar hardenability curves for 8600 alloy
steels with various carbon contents is shown in Fig. 3. Max-
imum hardenability of case-hardened 8620 steel is achieved,
Fig. 4, when the case carbon concentration is O.80-percent.

H-steels are guaranteed by the supplier to meet establish-
ed hardenability limits for specificgrades of steel. These steels
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Fig. 4 - Curves showing that maximum hardenability of 8620 steel is achieved
when case carbon concentration is at O.80-percent carbon. Courtesy Climax
Molybdenum Co.

Fig. S- Hardenability upper and lower curve limits for 8620H steel. SAE
Iron and Steel Handbook Supplement 30,

are designated by an "H" following the composition code
number, such as 8620H, Fig. 5. Hardenability of H-steels and
a steel with the same chemical composition is not necessari-
ly the same. Therefore, H-steels are often specified when it
is essential that a given hardness be obtained at a given point
below the surface of a gear tooth.
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CALCULATION OF SPUR GEAR TOOTH ...
(continued from page 14)
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Fig. 9'- Combined flexibility curve 50 versus abscissa of load on line of ac-
tion for a pair of identical standard AGMA gears (40 teeth, 20 deg); W ~
1 000 lb/In., P = 0.5, comparison with Weber's curve.
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of the contact zone as calculated from Hertz's theory. Con-
tact width may be calculated at each point on the line of ac-
tion and depends in a nonlinear fashion on absolute dimen-
sions, material properties and transmitted load. This being
known, the flexibility curve for the given pair of gears may
be obtained, including the load sharing effect. Comparison
with published results by Weber, (3) Chabert, (7) and
Cornen(lO} shows good agreement regarding the shape' of
flexibility curves, except for a slight shift between these
curves, which is due, probably, to the selection of different
reference points.
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