
and

Pressure Angle Changes in the
Transverse Plane for Circular'

Cut Spiral Bevel Gears
by

Ronald Huston
University of Cincinnati

Cincinnati, Ohio

John J. Coy
NASA lewis Research Center

CleveJand, Ohio

Abstract
This article examines pressure angle changes along a tooth for

circular cut spiral bevel crown. gears ..The changes are measured in
the transverse planes for various cutter profiles. Three cases are con-
sidered: 1) a straight line profile; 2) a circular profile; and 3) an in-
volute profile .. lneach case, the heel-to-toe variation is approximately
3, depending on the cutter radius. For conical gears, the variation
is increased by the fact'or lIsina where a is the half-cone angle.
Finally, it is shown that pressure angle variation occurs for all cutter
profiles,

Introduction
Recently it has been suggested that the transverse plane

may be very useful in studying the kinematics and dynamics
of spiral bevel gearsY·2) The transverse plane is perpen-
dicular to the pitch and axial planes as shown in Fig. 1. Buck-
ingham!3] has suggested that a spiral bevel gear may be
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viewed as a limiting form of a "stepped" straight-toothed gear
as in Fig. 2. The transverse plane is customarily used in the
study of straight toothed bevel gears. (4)

For spiral bevel gears the normal plane is often used for
studying the kinematics and dynamics. One reason for this
is that for smooth tooth surfaces the contact forces between
mating teeth are transmitted in the normal plane; that is. the
resultant force vector is in 'the normal plane. However,. if fric-
tion is present, the resultant force vector is rotated out of
the normal plane, and it becomes more nearly parallel to the
transverse plane.

Therefore, in this brief article the pressure angle changes
in the transverse planes are examined along the circular cut
tooth ..The balance of the article contains four parts. The first
part provides some preliminary geometrical considerations.
The next part contains the analysis. Applications are
presented in the third part, and the final part makes some
conclusions for mechanical design.

Preliminary Geometrical Concepts
Consider the pitch plane and a circular-cut tooth centerline

as shown in Fig. 3. X and Yare the Cartesian axes with origin
at 0, the gearcenter. Xl and YI ar'e axes parallel to X and
Y with origin at C, the cutter center. C has X and Y coor-
dinates (H, V). R.: is the mean "mean cutter radius"; that is,
~ is the distance from C to the tooth surface in the pitch
plane. The cutter radius f1 for other points on the tooth sur-
face is a function of the elevation z of those points above
or below the pitch plane. For example, for and "inside" tooth
surface r1 might be expressed as:

(1)



Fig. 1- Spiral Bev I Crown GEar and Idrntifying Planes

Fig. l-Spiral Bevel GeaJ as a limiting Form of a "'Stepped" Straight-Toothed
Gear

where Hz) describes the cutter tooth geometry. Finally in Fig.
3, R, and R, are the inner ("toe") and outer ("heel") tooth
radii and rfm is the spiral angle at the mean tooth radius Rn,.

Consider a typical point P along the tooth 'centerline. Let
r be the radial distance OP and let f be the angle between
OP and the X axis as shown in Fig. 4. Let Xz and Y2 bea
third coordinate system and let its origin be C and let it be
inclined at an angle I: to Xl and Y). Then Xz is parallel to
OP. Finally, let rf be 'the spiral angle at P as shown.

The angle ".f and the radial distance r are not independent,
but are related by the expression(2.4l

(2)

(This relation foUows from the Law of cosines with triangle
ope by noting that the cosine of the angle at. P is sin,p.) U
Rm is the mean tooth radius, Equation (2) may be expressed
as:

(This relation is obtained by noting in Fig. 3 that H and V
may be expressed as H - Rm- R.:sin,pm and V = l\:
cos,pm.)

The tooth profile in the transverse plane at the typica1 point

Nomenclature
O! - Half-Cone Angle
f - Angle Between OPand the X-axis (Fig. 4)
!/I - Spiral Angle
!/1m - Spirall Angle at the mean, Tooth Radius
Q - Radius of the Circular Profile and Involute

Generating Circle
6 - Pl'es5U1'e Angle in the Traasverse Plane
f)c - Complement of the Pressure Angle
(j - Pressure Angle in the Normal Plan
E. '1 - Coordinate System in the Normal Plane (Fig. 8l'
a.b - Coordinates of the Center of a Circular Tooth

Profile (fig. 7)
C - Cutter Center
F(z) - Function Defi~ the Cutter Tooth Geometry
H, V - X and Y Coordina.tes ,of C
o - Ge,ar Center
r - Radial Distance
rl - General Cutter Radius
~ - Mean Cutter Radius
Rj - Inner ('Toe") Tooth Ramus
R, - Outer ("Heel") Tooth Radius
Rm - Mean Tooth Radius
X, Y - Cartesian Axes with Origin at 0
Xl, Y1- Cartesian Axes with Origin at C
X2• Y2-Cartesian Axes with Origin at C (Fig. 4)
z - Elevation Ahov,e or Below the .Pitch Plane
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Fig. J - View of Pitch Plane and Tooth Centerline of Crown Gear

P depends upon r (or .p). The following part of the article
containing the central analysis, discusses these tooth profile
changes between different transverse planes along the tooth
centerline for various cutter profiles.

Analysis of Toath Profile Changes Between Transverse Planes
Equation (1) provides a relationship between the cutter

radius rl and the elevation z of a point on the tooth surface.
By solving for z. the relationship may be expressed in the
form:

(4)

The cutter profile, described by the function F{z) of Equa-
tion (1), is thus also described by the function f(rl) in Equa-
tion (4); however, in Equation (4), the ensuing tooth surface
is readily seen to be a surface of revolution. Equation (4) may
also be viewed as providing a description of the tooth pro-
file in the normal plane.

The cutter radius rl may be expressed in terms of the
coordinates Xl, Yl and x:z, Y2 in the fonn:

(S)

Hence, by comparing Equations (4) and (S), z may be con-
sidered to be a function of Xl and Yl or of X2 and Y2' If Xl

or Xz has a constant value. Equation (4) provides a descrip-
tion of the tooth profile in a transverse plane, For example,
if Xl ... Rcsin.pm' the tooth profile in the mid-transverse
plane is

(6)

That is, the elevation of a point on the tooth surface in the
mid-transverse plane depends upon YI' For a general
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fig. 4-Coordinate Geometry for a Typical Point P on the Tooth Cet1lerline

transverse plane, Equation (6) may be expressed as:

z = f ([Rc2sin2lf + rz)"') = g(yz, If) (7)

Thus, the tooth profile in a general transverse plane
depends upon the spiral angle'" which, in tum, is a function
of the radial distance r, through Equation (3).

Equation (7) Can be used to study tooth profile changes
between the transverse planes. For example, a comparison
of g(Y2' "') with g(Y2,"'m) provides a measure of the
modification of the transverse profile from the profile in the
mid-transverse plane. Equation (7) is also useful for deter-
mining the pressure angle changes between the transverse
planes. To see this, consider the profile in the transverse plane
depicted in Fig. 5. Let (J be the pressure angle and let (Jc be
its complement. Then, for the inside tooth surface tan(Je is;

(8)

or

(9)

But since tanOc = cotO, the pressure angle () (in the trans-
verse plane is

(10)

Equation (:1.0)may be viewed asan algorithm which pro-
vides the pressure angle as a function of the radial distance
r from the gear center. Moreover, it is a valid algorithm for
any cutter profile.

Example Applications
Equation (10) was used to study the pressure angle changes
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FIg. 5- Tooth Profile in the Transverse Plane

through the transverse plane along the inside tooth surface
for three cutter profile shapes: 1) a straight line profile, 2)
a circular profile, and 3) an involute profile.

1. Straight Line Cutter Profile. Fig. 6 depicts a straight line
tooth profile in the normal plane. In this case Equation (4)
takes the form:

(11)

where R.: is the mean cutter radius and (r is the cutter in-
clination, By substituting into Equation (10) we obtain the
transverse plane pressure angle,

where we have replaced fl by (R~ sin2,p + rl)V, as in Equa-
tion (6). The spiral angle if; may be expressed i.n terms of the
radial distance r by either Equation (2) or (3). Hence, () is
a function of r.

Fig. 9 shows a computer drawn graph of ,f) in the pitch plane
(that is, with Y2 = -·Rccos~) for Rc + 6.0 in. (lS.24cm),
R.n = 7.0 in. (17.7&m), ,pm =70°, and a =70.

2. Circuwr Cutter Profile. Fi.g. 7 depicts a circular tooth
profile in the normal plane. In this case, the equation of the
profile may be expressed as:

(13)

where a, b, and Q' are the circle center coordinates and the
circle radius as shown in Fig. 7. If a is the cutter inclination
at the mean cutter radius, then a and b may be expressed as:

<II = R.:: + e sina: and b = -(1 C05a (14)

Hence. Equation (4) may be expressed in the form:
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Fig. 6 - Straight-Line Tooth Profile in the Normal Plane

Then by substituting into Equation (10), we obtain the trans-
verse plane pressure angle:

() = tan -1 ~ ({;I2 - [(~ sin.2,p +y§)"" - R.: - e sina]2 ~.

(~ sin2,p -t rl)V'.

[(~ sin2,p + rl)'''' - Rc- e sina]-l Y2] (16)
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FIg. 7 - Circular Tooth Profil in the Normal Plane
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Fig. 8-Involute Tooth Profile in the 'ormal Plane Togeth r with the in-
volute Generating Circle

where. as before, we have replaced r1 by (~in2,.t.. + 11)'11.

Fig. 9 also shows a graph of Equation (16) for R.: - 6.0 in.
(15.24 em). Rm - 7.0 in. (17.7&rn), e "'"'1.0 in..(2.54cm).
!/1m - 30", a - 70", and Y2 - -Rccos,.t...

r

3,.. Involute Profile. Fig. 8 depicts an involute tooth profile
in the normal plane, together with the generating circle of
the involute. In terms of the t.lJ.coordina.te system, the coor-
dinates of a typical point P on the involute curve may be
expressed as:

~= Q' (sin/3 - /3cos/3) (17)

and

."= e (co5/3 + flsmp) (18)

where e is the radius of the generating circle and 6 is the
pressure angle in the normal plane. Equations (17) and (18)
are parametric equations of the profile with (3 being the
parameter. In the z, r1 coordinate system these equations
may be written as:

Z '"" - 110 + e «(05/3 + 6sin(3) (19)

and

rl == R.: -eo + e (sin/3 - /3cosfJ) (20)

where ~ and 110 are 'the values of e and." when 6 = hr/2)
-0: (that is, ~ and 110 are the coordinates of the intersection
oE the profile and the r)-axis.)
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In this case, the parametric Equations (19) and (20) replace
Equation (4). In Equation (10), f'(rl) becomes

Hence, the pressure angle :in the transverse plane is:

(22)

where, as before, we have replaced r1 by (~in21f + Y2)",
and where in this case, Y2 is related to f3 through Equation
(20), leading to the expression:

Finally, Fig. 9 also shows a graph of Equation (22) for
~ = 6.0 in .. (IS.24cm), Rm = 7.0 in. (17.78cm) e - 7.0
in. (17.78cm). Ifrn = 30, (J = 200

, and Y2 given by Equa-
tion (23).

Discussion and Conclusions
Fig. 9 shows the pressure angle variation in the transverse

planes for the diHerent cutter profile shapes. In each case the
variation is similar, resulting in a pressure angle change of
approximately 3D or 15% from heel to toe. For conical gears,
this change in pressure angle would be enhanced by the fac-
tor (l/sina) where a is the half-cone angle,u;)

The effects of this pressure angle change on the gear
kinematics, stress, and wear are unknown, but they could
be significant.

Finally, the question arises as to whether it would be possi-
ble to adjust the cutter profile £(rl) so that the transverse
plane pressure angle would be independent of r, the radial
position on the gear. An examination of Equation (10) shows
that f is not an explicit function of X2 or Y2' This means it
is riot possible to adjust f to make r1/f'(rl)Y2 a constant.
Therefore, the pressure angle changes exhibited in Fig. 9 will
'be similar for all circular cut gears regardless of the cutter
profile,
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