Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

shaving - Search Results

Related Buyers Guide Categories

Gear Shaving Machines
Shaving Cutters

Related Companies

Capital Tool Industries
CTI is a long established company producing quality Gear Cutting Tools. We specialize in the manufacture of Gear Hobs, Worm Gear Hobs, Involute Gear Cutters, Gear Shaper Cutters, Gear Shaving Cutters & all types of Milling Cutters.

Comtorgage Corporation
Comtorgage Corporation manufactures a variety of hand-held, indicating gages (analog or digital) designed and built to measure various characteristics of machined, molded, forged, and pressed parts. Comtorgages are intended for use on the shop floor, or in the lab, wherever there is a requirement for frequent, and accurate monitoring of specific dimensions, with or without data collection.

ESGI Tools Pvt. Ltd.
We introduce ourselves as the leading manufacturer & Exporters of gear cutting tools, including hobs, shaper cutters, shaving cutters, rack milling cutters, Coniflex bevel gear cutters, shaving cutters and master gears.

Gleason Cutting Tools Corporation
Wherever superior gear performance is needed -- from hand-held power tools to super tankers, from automobiles to aircraft -- Gleason Cutting Tools Corporation gear tools are at work, helping raise the standard of bevel and cylindrical gear manufacturing to levels unimaginable just a few years ago.

Mitsubishi Heavy Industries America
Our family of gear cutting machines shares a name and a whole lot more. Mitsubishi gear hobbers, shapers, shavers and grinders also share Mitsubishi machine construction and Mitsubishi software and have common controls. That is why only Mitsubishi gear machines--the most complete family of gear machines--can deliver the fastest CNC learning curves and the highest quality gears.

Star Cutter Co.
Headquartered in Farmington Hills, MI, StarCut Sales, Inc. is a wholly owned subsidiary of Star Cutter Company and is a partner in the Star SU LLC enterprise for marketing, sales, and service. Through Star SU and StarCut Sales, Inc.'s international organization Star Cutter Company markets and services its products in North America, South America, Europe and the Far East.

Star SU LLC
Star SU LLC provides the latest in gear and rotor manufacturing technology by offering a wide variety of gear cutting machinery, tools and services.

Steelmans Broaches Pvt. Ltd.
Manufacturers and Exporters of Push and Pull style Spline, Serration, Keyway, Surface, Standard Broaches and Broach Sets. We also manufacture Gear Hobs, Gear Cutters, Serration Cutters,Gear Shaper Cutter, Shaving Cutters , Milling Cutters....

American Gear Tools
Roto-Flo / U.S. Gear Tools
U.S. Gear Tools

Related Power Transmission Categories

Gear Shaving Services

Related Power Transmission Companies

Midwest Gear & Tool, Inc.
With more than 20 years in gear manufacturing, Midwest Gear & Tool has an elaborate straight and spiral bevel gear manufacturing capability. We also manufacture a complete line of hydraulic, electric and manual transmissions and reducers. We m...

RJ Link International, Inc.
We design and manufacture custom gearboxes, provide precision machined components and perform contract machining services - including gear grinding.

Articles About shaving


1 Gear Shaving Basics, Part II (January/February 1998)

In our last issue, we covered the basic principles of gear shaving and preparation of parts for shaving. In this issue, we will cover shaving methods, design principles and cutter mounting techniques.

2 Sicmat Releases Raso 200 Dynamic Shaving Machine (November/December 2011)

The Raso 200 Dynamic has been developed to offer all the characteristics of a gear shaving machine with a competitive price.

3 The Process of Gear Shaving (May/June 1984)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity.

4 Gleason's Genesis 130SV Gear Shaving Machine (May/June 2006)

The 130SV shaving machine from Gleason is the newest of the company's Genesis family of gear production equipment.

5 Gear Shaving Basics - Part I (November/December 1997)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.

6 Gear Shaving Basics, Part I (November/December 1997)

Gear shaving is a free cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity.

7 Gear Shaving - Process Simulation Helps to Comprehend an Incomprehensible Process (September/October 2006)

Due to its economical efficiency, the gear shaving process is a widely used process for soft finishing of gears. A simulation technique allows optimization of the process.

8 The Process of Gear Shaving (January/February 1986)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity. The process can also improve tooth surface finish and eliminate, by crowned tooth forms, the danger of tooth end load concentrations in service. Shaving provides for form modifications that reduce gear noise. These modifications can also increase the gear's load carrying capacity, its factor of safety and its service life.

9 Gear Finishing by Shaving, Rolling and Honing, Part I (March/April 1992)

There are several methods available for improving the quality of spur and helical gears following the standard roughing operations of hobbing or shaping. Rotary gear shaving and roll-finishing are done in the green or soft state prior to heat treating.

10 Gear Finishing by Shaving, Rolling and Honing, Part II (May/June 1992)

Part I of this series focused on gear shaving, while Part II focuses on gear finishing by rolling and honing.

11 Our Experts Discuss Hobbing Ridges, Crooked Gear Teeth, and Crown Shaving (March/April 1992)

Question: When cutting worm gears with multiple lead stock hobs we find the surface is "ridged". What can be done to eliminate this appearance or is to unavoidable?

12 Machine Marks on Gear Flanks (May 2014)

What causes shaving cutter marks on gear flanks and can they be prevented?

13 Computerized Recycling of Used Gear Shaver Cutters (May/June 1993)

Most gear cutting shops have shelves full of expensive tooling used in the past for cutting gears which are no longer in production. It is anticipated that these cutters will be used again in the future. While this may take place if the cutters are "standard," and the gears to be cut are "standard," most of the design work done today involves high pressure angle gears for strength, or designs for high contact ratio to reduce noise. The re-use of a cutter under these conditions requires a tedious mathematical analysis, which is no problem if a computer with the right software is available. This article describes a computerized graphical display which provides a quick analysis of the potential for the re-use of shaving cutters stored in a computer file.

14 Viewpoint (March/April 1998)

Jules Kish responds to comments about his article on finding a hunting ratio, and Dr. Sante Basili argues that shaving is still the best way to finish a rough-cut gear.

15 Generating and Checking Involute Gear Teeth (May/June 1986)

It has previously been demonstrated that one gear of an interchangeable series will rotate with another gear of the same series with proper tooth action. It is, therefore, evident that a tooth curve driven in unison with a mating blank, will "generate" in the latter the proper tooth curve to mesh with itself.

16 EDM Specialty Gears (May/June 1996)

The capabilities and limitations of manufacturing gears by conventional means are well-known and thoroughly documented. In the search to enhance or otherwise improve the gear-making process, manufacturing methods have extended beyond chip-cutting - hobbing, broaching, shaping, shaving, grinding, etc. and their inherent limitations based on cutting selection and speed, feed rates, chip thickness per tooth, cutting pressure, cutter deflection, chatter, surface finish, material hardness, machine rigidity, tooling, setup and other items.

17 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

18 Gleason Acquires Assets of Hurth (September/October 1995)

Rochester, NY - Gleason Corporation has acquired the assets of Hurth Maschinen and Werkzeuge GmbH, the designer and builder of cylindrical (parallel-axis) gear-making machinery and tooling based in Munich, Germany. The addition of Hurth gear shaving machines and tooling and gear honing machines will further broaden Gleason's expanding product line for manufacturers of cylindrical gears.

19 An Experimental Study on the Effect of Power Honing on Gear Surface Topography (January/February 1999)

Gear noise associated with tooth surface topography is a fundamental problem in many applications. Operations such as shaving, gear grinding and gear honing are usually used to finish the gear surface. Often, gears have to be treated by a combination of these operations, e.g. grinding and honing. This is because gear honing operations do not remove enough stock although they do create a surface lay favorable for quiet operation. See Fig. 1 for typical honing process characteristics. Gear grinding processes, on the other hand, do remove stock efficiently but create a noisy surface lay.

20 Form Diameter of Gears (May/June 1989)

One of the most frequently neglected areas of gear design is the determination of "form diameter". Form diameter is that diameter which specifies the transition point between the usable involute profile and the fillet of the tooth. Defining this point is important to prevent interference with the tip of the mating gear teeth and to enable proper preshave machining when the gear is to be finished with a shaving operation.

21 Gear Manufacturing Methods - Forming the Teeth (January/February 1987)

The forming of gear teeth has traditionally been a time-consuming heavy stock removal operation in which close tooth size, shape, runout and spacing accuracy are required. This is true whether the teeth are finished by a second forming operation or a shaving operation.

22 Hard Gear Finishing (March/April 1988)

Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.

23 Hard Finishing and Fine Finishing Part 1 (September/October 1989)

Profitable hard machining of tooth flanks in mass production has now become possible thanks to a number of newly developed production methods. As used so far, the advantages of hard machining over green shaving or rolling are the elaborately modified tooth flanks are produced with a scatter of close manufacturing tolerances. Apart from an increase of load capacity, the chief aim is to solve the complex problem of reducing the noise generation by load-conditioned kinematic modifications of the tooth mesh. In Part II, we shall deal with operating sequences and machining results and with gear noise problems.

News Items About shaving

1 Gleason Genesis S130SV Gear Shaving Machine (April 8, 2006)
The 130SV shaving machine from Gleason is the newest of the company’s Genesis family of gear production equipment. Introduced to... Read News

2 Sicmat Releases Raso 200 Dynamic Shaving Machine (November 10, 2011)
The Raso 200 Dynamic has been developed to offer all the characteristics of a gear shaving machine with a competitive price. With a footp... Read News