# January/February 1988

Archive > 1988 > January/February 1988

## Technical Articles

Describing Nonstandard Gears - An Alternative to the Rack Shift Coefficient
The use of dimensionless factors to describe gear tooth geometry seems to have a strong appeal to gear engineers. The stress factors I and J, for instance, are well established in AGMA literature. The use of the rack shift coefficient "x" to describe nonstandard gear proportions is common in Europe, but is not as commonly used in the United States. When it is encountered in the European literature or in the operating manuals for imported machine tools, it can be a source of confusion to the American engineer.

The Relationship of Measured Gear Noise to Measured Gear Transmission Errors
Vehicle gear noise testing is a complex and often misunderstood subject. Gear noise is really a system problem.(1) most gearing used for power transmission is enclosed in a housing and, therefore, little or no audible sound is actually heard from the gear pair.(2) The vibrations created by the gears are amplified by resonances of structural elements. This amplification occurs when the speed of the gear set is such that the meshing frequency or a multiply of it is equal to a natural frequency of the system in which the gears are mounted.

The Use of Boundary Elements For The Determination of the AGMA Geometry Factor
The geometry factor, which is a fundamental part of the AGMA strength rating of gears, is currently computed using the Lewis parabola which allows computation of the Lewis form factor.(1) The geometry factor is obtained from this Lewis factor and load sharing ratio. This method, which originally required graphical construction methods and more recently has been computerized, works reasonably well for external gears with thick rims.(2-6) However, when thin rims are encountered or when evaluating the strength of internal gears, the AGMA method cannot be used.

KHV Planetary Gearing - Part II
Consisting of only a ring gear b meshing with one or two planets a, a carrier H and an equal velocity mechanism V, a KHV gearing(Fig. 1) is compact in structure, small in size and capable of providing a large speed ratio. For a single stage, its speed ratio can reach up to 200, and its size is approximately 1/4 that of a conventional multi-stage gear box.

## Departments

The Seeds of Our Future Are Now Being Planted (Publishers Page)
A medieval philosopher once said that if he knew for certain the world was to end tomorrow, he would be sure to take time to plant an apple tree in his garden today. The recent events in the world financial capitals have seemed a bit like prior notice of something cataclysmic, but like the philosopher, we can still find some reasons for hope in the face of an uncertain future. The good news for our industry is that four important efforts on the part of various organizations promise to have long-term positive effects on both the gear and machine tool businesses.