Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

March/April 1988

Archive > 1988 > March/April 1988

Download the March/April 1988 Issue in PDF format

Feature Articles

Technical Articles

Automated Acoustic Intensity Measurements and the Effect of Gear Tooth Profile on Noise
The NASA Lewis Research Center investigated the effect of tooth profile on the acoustic behavior of spur gears through experimental techniques. The tests were conducted by Cleveland State University (CSU) in NASA Lewis' spur gear testing apparatus. Acoustic intensity (AI) measurements of the apparatus were obtained using a Robotic Acoustic Intensity Measurement System (RAIMS). This system was developed by CSU for NASA to evaluate the usefulness of a highly automated acoustic intensity measurement tool in the reverberant environment of gear transmission test cells.

Contact Surface Topology of Worm Gear Teeth
Among the various types of gearing systems available to the gear application engineer is the versatile and unique worm and worm gear set. In the simpler form of a cylindrical worm meshing at 90 degree axis angle with an enveloping worm gear, it is widely used and has become a traditional form of gearing. (See Fig. 1) This is evidenced by the large number of gear shops specializing in or supplying such gear sets in unassembled form or as complete gear boxes. Special designs as well as standardized ratio sets covering wide ratio ranges and center distanced are available with many as stock catalog products.

Hard Gear Finishing
Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.

Departments

High Tech Manufacturing--Challenges for the 1990s (Publishers Page)
This issue's editorial is a reprint of the keynote address given by Michael Goldstein at the Computer Aided Gear Design Seminar held at the University of Northern Iowa, Cedar Falls, IA on November 9, 1987.