Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

May/June 1993

Archive > 1993 > May/June 1993

Download the May/June 1993 Issue in PDF format

Feature Articles

Technical Articles

Practical Optimization of Helical Gears Using Computer Software
The aim of this article is to show a practical procedure for designing optimum helical gears. The optimization procedure is adapted to technical limitations, and it is focused on real-world cases. To emphasize the applicability of the procedure presented here, the most common optimization techniques are described. Afterwards, a description of some of the functions to be optimized is given, limiting parameters and restrictions are defined, and, finally, a graphic method is described.

Computerized Recycling of Used Gear Shaver Cutters
Most gear cutting shops have shelves full of expensive tooling used in the past for cutting gears which are no longer in production. It is anticipated that these cutters will be used again in the future. While this may take place if the cutters are "standard," and the gears to be cut are "standard," most of the design work done today involves high pressure angle gears for strength, or designs for high contact ratio to reduce noise. The re-use of a cutter under these conditions requires a tedious mathematical analysis, which is no problem if a computer with the right software is available. This article describes a computerized graphical display which provides a quick analysis of the potential for the re-use of shaving cutters stored in a computer file.

Initial Design of Gears Using an Artificial Neural Net
Many CAD (Computer Aided Design) systems have been developed and implemented to produce a superior quality design and to increase the design productivity in the gear industry. In general, it is true that a major portion of design tasks can be performed by CAD systems currently available. However, they can only address the computational aspects of gear design that typically require decision-making as well. In most industrial gear design practices, the initial design is the critical task that significantly effects the final results. However, the decisions about estimating or changing gear size parameters must be made by a gear design expert.

Coarse Pitch Gears
This article discusses briefly some common manufacturing problems relating to coarse pitch gears and their suggested solutions. Most of the discussion will be limited to a low-quality production environment using universal machine tools.

Departments

The Limits of the Computer Revoltion (Publishers Page)
In this issue of Gear Technology, we are focusing on using computers to their greatest advantage in gear design and manufacturing. In a sense, that's old news. It's a cliche to suggest that computers make our work life easier and more productive. No company that wishes to remain competitive in today's global manufacturing environment can afford to be without computers in all their manifestations. We need them in the office; we need them next to our desks in place of drafting boards; we need them on the shop floor.

Using Hobs for Skiving; A Pre-Finish and Finishing Solution (Q&A)
Our company manufactures a range of hardened and ground gears. We are looking into using skiving as part of our finishing process on gears in the 4-12 module range made form 17 CrNiMO6 material and hardened to between 58 and 62 Rc. Can you tell us more about this process?

Delivering The Goods (Management Matters)
One of the key questions to be answered when exporting is how you are going to get your product to your customer. All the time, effort, and money you've spent to make a sale in the first place can be wasted if the shipment is late, damaged, or lost, or if delivery becomes an expensive bureaucratic nightmare for either you or the buyer.