Measuring Profile and Base Pitch Errors with a Micrometer

Richard L. Thoen

In this article, equations for finding profile and base pitch errors with a micrometer are derived. Limitations of micrometers with disc anvils are described. The design of a micrometer with suitable anvils is outlined.

Introduction

The span method is not widely used in the fine-pitch field, mainly because "it would be necessary to make micrometers with special anvils" (Ref. 1). Consequently, the pin method is still in widespread use, despite its requiring several micrometers instead of one or two, a large set of pins instead of no set at all, a computer instead of a pocket calculator for computations, and a change factor (Ref. 2) that is variable instead of constant. The pin method has, in George Grant's words (on the cycloid versus involute controversy, Ref. 3),

... the recommendation of many well-meaning teachers, and holds its position by means of "human inertia," or the natural reluctance of the average human mind to adopt a change, particularly a change for the better.

For a relatively sharp edge between the tip land and involute, a condition typical of fine-pitch generated gearing (hobbled, shaped, ground), the tooth thickness can be measured with an ordinary micrometer, as shown in Figure 1. But for a relatively large tip round between the tip land and involute, a condition typical of formed gearing (molded plastic, die cast, powder metal, stamped, cold-drawn), the tooth thickness generally cannot be measured with an ordinary micrometer, since contact is near the tooth tips.

Conventional wisdom has it—dating back to Wildhaber, the originator of the span method (Ref. 5)—that contact should be near the mid-point of the active profile, away from any tip and/or root relief. Yet, it is essential to understand that tooth thickness is not measured directly but is calculated from an equation based on perfect teeth. As a result, there are unknown errors in measured tooth thickness (Refs. 6 & 7) that can nullify the apparent benefit of contact near the mid-point of the active profile, particularly in the fine-pitch field wherein profile modification is not prevalent.

As Louis Martin, chairman of the AGMA Fine-Pitch Committee from its inception in 1941 until 1953, stated (Ref. 4):

The glaring mistake that has been made by the gear industry is to try to relate fine-pitch requirements with experience gathered from the coarse-pitch field.

Micrometer Design

A micrometer with suitable anvils can measure not only the profile and base pitch errors on fine-pitch gearing, but also the tooth thickness on

Nomenclature

d Diameter of reference circle
d_b Diameter of base circle
M Span dimension or measurement
M_s Basic span dimension
N Number of teeth on gear
n Number of spanned teeth
P Diametral pitch
p Circular pitch on reference circle
p/2 Basic tooth thickness on reference circle
p_b Base pitch
r_t Radius of reference circle
r_b Radius of base circle
r_c Radius to point of contact
r_i Inside form radius
r_o Outside form radius
\Delta t Deviation from p/2
\tau_t Tooth thickness on base circle
\Delta \tau_t Deviation from t_t
\tau_b Angle subtended by t_t/2
\Phi Profile angle

Figure 1—Span measurement with an ordinary micrometer.

Figure 2—Different span measurements on the same gear.
formed gearing. Specifically, it is seen from Figure 2 that the tooth thickness can be calculated from any one of several different span measurements. Thus, the calculated tooth thickness for a perfect gear is the same for different span measurements. Conversely, the calculated tooth thickness for an imperfect gear is not the same for different span measurements—a symptom of errors in profile and/or pitch.

Also, from Figure 2 it is seen that the base pitch can be measured by starting with the maximum span measurement and then, while retaining the point of contact on either outermost tooth, reducing the span dimension in steps equal to the base pitch.

When measuring the minimum span dimension, contact is near the tips of the anvil's, as seen in Figure 2. So, for a micrometer with conventional disc anvils, there is little more than point contact on the teeth, not line contact. Moreover, the full face width of a pinion on a cluster gear generally cannot be spanned with disc anvils.

Consequently, the anvils should be square, not round. And since a square anvil cannot rotate, the micrometer spindle must be non-rotating, as on conventional blade micrometers. A micrometer with these features, made for spanning gears of 20–80 diametral pitch, is shown in Figure 3.

Averaging

On generated gearing, the profile error tends to be uniform around the gear, whereas the index error tends to be sinusoidal (Refs. 8 & 9). As a result, the error in span measurement tends to be sinusoidal around the gear. Thus, to minimize the detrimental effect of index error, the calculated tooth thickness should be based on the average of two or more span measurements.

In particular, for even tooth numbers, the calculated tooth thickness is based on the average of two diametrically opposite span measurements. Odd tooth numbers 3 and greater can be treated as an even tooth number without incurring a significant error. For \(N = 21, 15 \) and 9, the calculated tooth thickness is based on the average of three span measurements 120° apart.

It is important to remember that if the averages for various sets of teeth around the gear are significantly different (a condition typical of formed gearing), then averaging is not applicable (Refs. 10 & 11).

For \(N = 19, 17, 13 \) and 11, the calculated tooth thickness is based on the average of the maximum and minimum span measurements, provided that they are within 180°/\(N \) of being diametri-

\[
M = d_b (n - 1) = \frac{\pi d_b}{N} + t_b,
\]

where

\[
p_b = \frac{\pi d_b}{N}
\]

and

\[
t_b = 2 \tau_b,
\]

so that

\[
M = d_b (n - 1) = \frac{\pi}{N} + \tau_b.
\]

From Figure 5, it is seen that the

\[
\tau_b = \sin \Phi \frac{P}{2} + \Delta t,
\]

Richard L. Thoen

is a consultant specializing in medium- and fine-pitch gearing. He is the author of several articles and papers on measurement, involute mathematics, statistical tolerancing and other gearing subjects.
An examination of Figure 4 shows that

\[M = 2\sqrt{r_c^2 - r_b^2}. \]

Equating this equation to Equation 1 and solving for \(n \), the number of teeth to span is

\[n = \frac{N}{\pi} \left(\sqrt{\left(\frac{r_c}{r_b} \right)^2 - 1} - \sin \Phi - \frac{\Delta \cos \Phi}{d} \right) + \frac{1}{2}. \]

To find the range of \(n \), Equation 2 is solved for \(r_c = r_{of} \) and \(r_c = r_{if} \), where \(r_{of} \) is the outside form radius (minimum outside radius less chamfer or tip round), and \(r_{if} \) is the inside form radius (lowest point at which the mating gear can make contact).

In Equation 2, the \(n \) for \(r_c = r_{of} \) is rounded down, and the \(n \) for \(r_c = r_{if} \) is rounded up, both to the nearest integer.

The radius to the point of contact is, as seen in Figure 4,

\[r_c = \frac{\sqrt{d_b^2 + M^2}}{2}. \]

As mentioned earlier, the calculated tooth thickness for an imperfect gear is not the same for all span measurements. Specifically, given a span measurement \((M) \), the \(\Delta t \) is calculated from Equation 1. However, as seen in Figure 5, the \(\Delta t/2 \) is a circular arc on the reference circle, not a normal to the involute at radius \(r_c \) (Eq. 3). Even so, in Equation 1 the \(\Delta \cos \Phi = \Delta t_b \), where \(\Delta t_b/2 \) is normal to all points on the involute; that is, in Figure 5 the arcs \(\Delta t/2 \) and \(\Delta t_b/2 \) subtend equal angles, namely,

\[\frac{\Delta t/2}{r} = \frac{\Delta t_b/2}{r_b}, \text{ or } \Delta t - \frac{r_b}{r} = \Delta t_b, \]

where from Figure 5 the \(\cos \Phi = \frac{r_b}{d} \), so that \(\Delta \cos \Phi = \Delta t_b \). Thus, the equation for \(\Delta t_b/2 \) is simply

\[\frac{\Delta t_b}{2} = \frac{M - M_b}{2}, \]

where \(M \) is the span measurement and \(M_b \) is the basic span dimension, namely, that for \(\Delta t = 0 \) in Equation 1.

It is important to remember that the profile error is the variation in \(\Delta t_b/2 \) from \(r_{of} \) to \(r_{if} \), not a particular value from Equation 4.

For example, given that \(N = 44 \), \(\Phi = 20^\circ \), \(\Delta t = 0 \), \(r_{of} = 0.575 \), \(r_{if} = 0.525 \), and a diametral pitch that is mistakenly 40.2 instead of 40P. Find the
profile error relative to the 40P. From Equation 2, for 40P the \(n = 7.1 \) and 2.8 for \(r_{ef} \) and \(r_f \), respectively. See Table I for \(\Delta t_f/2 \).

The \(r_e \) for 40P is plotted against \(\Delta t_f/2 \) in Figure 6, which shows a profile error of 0.00079 between \(r_{ef} \) and \(r_f \). The exact profile error, as determined from enlarged layouts (Ref. 12), is 0.00076. Thus, for this idealized example, the error in the span method is 0.00003, or only 4%. The reason for the discrepancy is that in practice the \(r_e \) is known for the perfect gear (40P), not for the imperfect gear (40.2P).

References
8. Michalee, George W. Precision Gearing, John Wiley & Sons, 1966, pp. 73, 77 and 574.

Tell Us What You Think...
Visit www.geartechnology.com to
• Rate this article
• Request more information
• Contact the author or companies mentioned
• Make a suggestion
Or call (847) 437-6604 to talk to one of our editors!

When big things are on the move...

The specialist in cost-effective hard-broaching of internal splines

Fässler Corporation
131 W. Layton Avenue, Suite 308
Milwaukee, WI 53207
Phone (414) 769-0072
Fax (414) 769-8610
E-mail: fassler@execpc.com

www.powertransmission.com • www.geartechnology.com • GEAR TECHNOLOGY • SEPTEMBER/OCTOBER 2002