Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

November/December 1987

Archive > 1987 > November/December 1987

Download the November/December 1987 Issue in PDF format

Feature Articles

Technical Articles

Finishing of Gears by Ausforming
Almost all machines or mechanical systems contain precision contact elements such as bearings, cams, rears, shafts, splines and rollers. These components have two important common requirements: first, they must possess sufficient mechanical properties, such as, high hardness, fatigue strength and wear resistance to maximize their performance and life; second, they must be finished to close dimensional tolerances to minimize noise, vibration and fatigue loading.

Selection of Hobbing Data
The art of gear hobbing has advanced dramatically since the development and introduction of unique machine and tool features such as no backlash, super rigidity, automatic loading of cutting tools, CNC controls, additional machine power and improved cutter materials and coatings. It is essential to utilize all these features to run the machine economically.

Good Gears Start With Good Blanks
The quality of the finished gear is influenced by the very first machining operations of the blank. Since the gear tooth geometry is generated on a continuously rotating blank in hobbing or shaping, it is important that the timed relationship between the cutter and workpiece is correct. If this relationship is disturbed by eccentricities of the blank to its operating centerline, the generated gear teeth will not be of the correct geometry. During the blanking operations, the gear's centerline and locating surfaces are established and must be maintained as the same through the following operations that generate the gear teeth.

Computer Aided Design for Gear Shaper Cutters
Computer programs have been developed to completely design spur and helical gear shaper cutters starting from the specifications of the gear to be cut and the type of gear shaper to be used. The programs generate the working drawing of the cutter and, through the use of a precision plotter, generate enlarge scaled layouts of the gear as produced by the cutter and any other layouts needed for its manufacture.

KHV Planetary Gearing
Traditionally, a worm or a multi-stage gear box has been used when a large speed ratio is required. However, such boxes will become obsolete as size and efficiency become increasingly important considerations for a modern transmission. The single-enveloped worm gear has a maximum speed ratio of only 40 to 60. Its efficiency is only 30 to 60 per cent. The necessity of using bronze for the worm gear and grinding nitoalloy steel for the worm drives up material and manufacturing costs.

Departments

Don't Sell Us Short! (Publishers Page)
How is it that we woke up one day in the early 1980s to find that apparently American industry was suddenly inefficient, our workforce unproductive and our management inept? Almost overnight industry found its sales dropping dramatically, while for many companies foreign competition became excruciatingly intense. This sudden change in the economic climate proved fatal for many companies and has been nearly as hard on our collective morale. In a country used to winning, we began to hear ourselves talked of as losers.

Viewpoint (Voices)
Letters to the editor covering a variety of subjects, including computers in gear design, couplings and more.

Technical Calendar (Events)
Gear-related events from SME, ASME and overseas organizers.