Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

ADI - Search Results

Related Buyers Guide Categories

Shot Peening, Blasting & Beading

Related Companies

Applied Process
Applied Process is a world leader in austempering technology.

ECM USA
ECM Technologies started manufacturing heat-treatment furnaces in 1928. Since that time, ECM personnel have always been completely committed to extending their knowledge in the field of temperature control, high pressures, vacuum and the behavior of materials. This expertise, on an industrial scale, has always been enriched by our close partnership with furnace users, engineers, heat treat engineers and developers. Today, our knowledge base is at the core of all our customers' production lines. It is this concern for caring and listening, combined with our passion for our profession, which has forged ECM Technology and ECM USA’s recognized spirit of innovation.

Inductoheat Inc.
Inductoheat is the largest global manufacturer of induction heating equipment. We are part of the Inductotherm Group of some 40 companies worldwide. We design & build heat treating equipment & power supplies for heating a wide range of parts including gears & sprockets.

KISSsoft USA LLC
The KISSsoft calculation program has been developed to focus on the needs of mechanical engineers and power transmission profes

Norton | Saint-Gobain
Norton, a brand of Saint-Gobain, is a leading manufacturer of a wide array of abrasive products. For applications ranging from rapid stock removal to precision finishing in all industries, products are offered in BEST, BETTER and GOOD performance/price tiers to meet the needs of all end-user applications.

Presrite Corporation
Presrite manufactures net and near-net forgings for a wide range of industries in countries around the world. Its parts are used in the transmissions, engines and undercarriages of track-type tractors, excavators, wheel loaders and other off-highway vehicles. Presrite institutes an internal program designed to increase performance and quality levels while better controlling costs. Called ?6 SIGMA,? the program involves setting goals, collecting data, and then measuring and analyzing the results.

Steelmans Broaches Pvt. Ltd.
Manufacturers and Exporters of Push and Pull style Spline, Serration, Keyway, Surface, Standard Broaches and Broach Sets. We also manufacture Gear Hobs, Gear Cutters, Serration Cutters,Gear Shaper Cutter, Shaving Cutters , Milling Cutters....

Tianjin No.1 Machine Tool Works
In China, Tianjin No.1 Machine Tool Works (TMTW), with a history of 54 years, is one of the large scale manufacturers for gear cutting machines.

Drake Manufacturing Services Co. Inc.
Ingersoll Cutting Tools
Kleiss Gears, Inc.
Sandvik Coromant
Surplex GmbH
Wenzel America

Related Power Transmission Categories

Radial Lip Seals

Related Power Transmission Companies

Arrow Gear Co.
Since its inception in 1947, Arrow Gear Company has continued to build a solid reputation for quality, service and reliability. From the very beginning, Arrow has provided high precision spur, helical and bevel gears that meet the rapidly changing and the demanding requirements of many industries.

C&U Americas, LLC
C&U Bearings are used by some of the world’s leading manufacturers and service providers in a wide variety of applications. Every C&U Bearing is made to exacting standards to deliver the ultimate in the precision, performance, and quality.

DieQua Corp.
Thanks for checking us out! Diequa is a manufacturer and supplier of a wide range of premium quality power transmission and motion control gear drive and connecting components designed specifically to enhance the performance of your machine designs. These include speed reducers, gearmotors, servo planetary reducers, spiral bevel gearboxes, shaft phasing gearboxes, shaft couplings, torque limiters, and screw jack lifting systems.

Gleason K2 Plastics
Gleason-K2 Plastics is in the business of plastic gear design and injection molding precision plastic components with a focus on precision plastic gears. Our lights-out automation enables production of the most cost effective, custom molded gears (spur gears, helical gears, bevel gears, planetary gears, internal gears), pulleys, bushings, rotary air motor rotors and vanes, along with plastic nozzle assemblies, at unmatched quality levels

Luoyang SBI Special Bearing Co. Ltd.
With highly advanced technology, Luoyang SBI Special Bearing Co., Ltd. has been dedicated to providing a wide variety of bearing solutions for industries all around the world since its establishment in 1989.

Mach III Clutch Inc.
Mach III Clutch designs and manufactures air and spring set industrial friction clutches and brakes, clutch-brakes, clutch couplings, clutch mechanisms and mechanical torque limiters (slip clutches). All products made in the USA.

NSK Corporation
NSK is a global manufacturer of bearings and other motion & control products. It operates 51 manufacturing facilities worldwide and 12 global technology centers of excellence that draw from world-leading industry knowledge and manufacturing experience. NSK's dedication to engineering innovation results in state-of-the-art products designed to improve performance and extend service life. NSK's unique Asset Improvement Program helps customers improve productivity and efficiency to significantly reduce operating costs. The company’s industry and process-specific expertise and solutions are applied to identify and solve problems that are limiting productivity. This enables customers to achieve improved performance, enhanced competitiveness and increased profitability.

R+W America
Over the past 20+ years R+W has developed into a world leader in precision shaft couplings for torsional rigidity, vibration damping, and overload protection. Whether for micro motors or 10 megawatt drives, R+W couplings are customizable for most applications, while many standard models ship from stock. Configurable CAD models are available in a large number of file formats at www.rw-america.com

Smalley Steel Ring Company
Smalley Steel Ring Company manufactures Spirolox® Retaining Rings and Smalley Wave Springs. Spiral/Spirolox rings are interchangeable with stamped ring grooves; require no special tooling for removal. Wave springs reduce heights by 50%, with equal force/deflection as standard coil springs. Fit in tight radial/axial spaces. 10,000 stock parts, carbon/stainless steel. Specials from .200"- 120"; No-Tooling-Charges.

Zero-Max
Since 1949, Zero-Max, Inc. has created innovative solutions to motion control problems worldwide. With strategic distribution points located throughout the world, Zero-Max can deliver your motion control solution. The Zero-Max team of application specialists can engineer a solution to meet your motion control requirements.

Articles About ADI


1 ADI - A Designer Gear Material (March/April 1995)

If someone were to tell you that he had a gear material that was stronger per pound than aluminum, as wear-resistant as steel, easier to machine than free-machining steel and capable of producing gears domestically for 20% less than those now cut from foreign made forgings, would you consider that material to be "high tech"? Probably. Well, throw out all the pre-conceived notions that you may have had about "high tech" materials. The high-performance material they didn't teach you about in school is austempered ductile iron (ADI).

2 Untraditional Gear Machining (October 2013)

Look beyond the obvious, and you may well find a better way to machine a part, and serve your customer better. That’s the lesson illustrated in a gear machining application at Allied Specialty Precision Inc. (ASPI), located in Mishawaka, Indiana.

3 Crossroads and Transitions - Part II (July 2009)

The auction has been held. The warehouse is bare. The computers and furniture are being packed, and Cadillac Machinery, the company started by my father in 1950, and of which I was president for more than 25 years, is close to being no more.

4 Feedback - My Gear Is Bigger than Your Gear (May 2013)

Readers respond regarding the article from March/April 2013.

5 ...And from the Industry (October/November 1984)

Industry News from October/November 1984 Gear Technology.

6 Running Gear (January/February 2005)

The Addendum team has seen the future of running, and it's geared.

7 Leading the Way in Lead Crown Correction and Inspection (August 2013)

Forest City Gear applies advanced gear shaping and inspection technologies to help solve difficult lead crown correction challenges half a world away. But these solutions can also benefit customers much closer to home, the company says. Here's how…

8 Large Scores and Radial Cracks on Case-Hardened Worms (May/June 2003)

In the last couple of years, many research projects dealt with the determination of load limits of cylindrical worm gears. These projects primarily focused on the load capacity of the worm wheel, whereas the worm was neglected. This contribution presents investigations regarding damages such as large scores and cracks on the flanks of case-hardened worms.

9 Spreading The Word (March/April 1997)

Long-time readers of these pages will know that I have always felt strongly about the subject of professional education. There's nothing more important for an individual's career development than keeping up with current technology. likewise, there's nothing more important that a company can do for itself and it employees than seeing to it they have the professional education they need. Giving people the educational tools they need to do their jobs is a necessary ingredient for success.

10 Influence of Gear Design on Gearbox Radiated Noise (January/February 1998)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.

11 Austempered Ductile Iron: Technology Base Required for an Emerging Technology (October/November 1984)

This paper addresses Austempered Ductile Iron (ADI) as an emerging Itechnology and defines its challenge by describing the state-of-the-art of incumbent materials. The writing is more philosophical in nature than technical and is presented to establish a perspective.

12 Development of Gear Technology and Theory of Gearing (July/August 1999)

I must admit that after thumbing through the pages of this relatively compact volume (113 pages, 8.5 x 11 format), I read its three chapters(theory of gearing, geometry and technology, and biographical history) from rear to front. It will become obvious later in this discussion why I encourage most gear engineers to adopt this same reading sequence!

13 Bigger and Better Than Ever (July/August 1999)

Gear Expo 99, AGMA's biennial showcase for the gear industry, has left the Rust Belt this year and landed in Music City U.S.A., Nashville, Tennessee. The event, with exhibitors from around the globe showing off the latest in gear manufacturing as well as metal working processes, will be held at the Nashville Convention Center, October 24-27, 1999. According to Kurt Medert, AGMA vice president and Gear Expo show manager, "In choosing Nashville, AGMA;s Trade Show Advisory Council found a city that is an excellent trade show site. It has the right mix of convention center, nearby hotels, and a clean downtown area with entertainment readily available for the exhibitors and visitors alike. Nashville is in the heart of southern industry, which we see as a focus of growth for the gear industry and its customers."

14 Metallurgical Aspects to be Considered in Gear and Shaft Design (March/April 1999)

In his Handbook of Gear Design (Ref.1), Dudley states (or understates): "The best gear people around the world are now coming to realize that metallurgical quality is just as important as geometric quality." Geometric accuracy without metallurgical integrity in any highly stressed gear or shaft would only result in wasted effort for all concerned - the gear designer, the manufacturer, and the customer - as the component's life cycle would be prematurely cut short. A carburized automotive gear or shaft with the wrong surface hardness, case depth or core hardness may not even complete its basic warranty period before failing totally at considerable expense and loss of prestige for the producer and the customer. The unexpected early failure of a large industrial gear or shaft in a coal mine or mill could result in lost production and income while the machine is down since replacement components may not be readily available. Fortunately, this scenario is not common. Most reputable gear and shaft manufacturers around the world would never neglect the metallurgical quality of their products.

15 Hard Gear Finishing With CBN-Basic Considerations (May/June 1998)

For over 50 years, grinding has been an accepted method of choice for improving the quality of gears and other parts by correcting heat treat distortions. Gears with quality levels better than AGMA 10-11 or DIN 6-7 are hard finished, usually by grinding. Other applications for grinding include, but are not limited to, internal/external and spur/helical gear and spline forms, radius forms, threads and serrations, compressor rotors, gerotors, ball screw tracks, worms, linear ball tracks, rotary pistons, vane pump rotators, vane slots, and pump spindles.

16 The Gear Industry and Y2K (July/August 1999)

If you think Y2K will mean the end of the world, forget it. General Vladimir Dvorkin recently said, "I'd like to apologize beforehand if I fail to realize someone's hopes for the Apocalypse." Te general was, of course, discussing Russian nuclear missiles, making the point that they are not going to launch or detonate when the calendar rolls over to January 1, 2000. General Dvorkin's American counterparts are similarly optimistic. While all that is a relief, it raises the question: will Y2K be as kind to the rest of society? And more specifically, will it be as kind to the gear industry? According to AGMA's president, Joe Franklin, the answer is a resounding "yes." According to Franklin, the AGMA Board considers Y2K a non-issue within an industry that is well ahead of others in its preparedness for January 1, 2000. But is it really? Does the gear industry understand the problem any better than other sectors of society? It's a relief to know that the nuclear bombs are not likely to fall within the first moments of the year 2000, but how about the computers and machines that keep the worldwide economy together?

17 Vectors in Gear Design (July/August 1999)

Friction weighs heavily on loads that the supporting journals of gear trains must withstand. Not only does mesh friction, especially in worm gear drives, affect journal loading, but also the friction within the journal reflects back on the loads required of the mesh itself.

18 Ferritic Nitrocarburizing Gears to Increase Wear Resistance and Reduce Distortion (March/April 2000)

Quality gear manufacturing depends on controlled tolerances and geometry. As a result, ferritic nitrocarburizing has become the heat treat process of choice for many gear manufacturers. The primary reasons for this are: 1. The process is performed at low temperatures, i.e. less than critical. 2. the quench methods increase fatigue strength by up to 125% without distorting. Ferritic nitrocarburizing is used in place of carburizing with conventional and induction hardening. 3. It establishes gradient base hardnesses, i.e. eliminates eggshell on TiN, TiAIN, CrC, etc. In addition, the process can also be applied to hobs, broaches, drills, and other cutting tools.

19 Definition and Inspection of Profile and Lead of a Worm Wheel (November/December 1999)

Traditionally, profile and lead inspections have been indispensable portions of a standard inspection of an involute gear. This also holds true for the worm of a worm gear drive (Ref. 1). But the inspection of the profile and the lead is rarely performed on a worm wheel. One of the main reasons is our inability to make good definitions of these two elements (profile and lead) for the worm wheel. Several researchers have proposed methods for profile and lead inspections of a worm wheel using CNC machines or regular involute and lead inspections of a worm wheel using CNC machines or regular involute measuring machines. Hu and Pennell measured a worm wheel's profile in an "involute" section and the lead on the "pitch" cylinder (Ref. 2). This method is applicable to a convolute helicoid worm drive with a crossing angle of 90 degrees because the wheel profile in one of the offset axial planes is rectilinear. This straight profile generates an involute on the generated worm wheel. Unfortunately, because of the hob oversize, the crossing angle between the hob and the worm wheel always deviates from 90 degrees by the swivel angle. Thus, this method can be implemented only approximately by ignoring the swivel angle. Another shortcoming of this method is that there is only one profile and one lead on each flank. If the scanned points deviated from this curve, it produced unreal profile deviation. Octrue discussed profile inspection using a profile checking machine (Ref. 3).

20 Don't Miss These Booths! (September/October 1999)

We've contacted many of the gear industry's leading suppliers to find out what they'll be showing at Gear Expo 99. Booth numbers are current as of July 31, 1999, but they are subject to change. A current list of exhibitors and booth information is available at the AGMA Web site at www.agma.org.

21 Programmable Separation of Runout From Profile and Lead Inspection Data for Gear Teeth With Arbitrary Modifications (March/April 1998)

A programmable algorithm is developed to separate out the effect of eccentricity (radial runout) from elemental gear inspection date, namely, profile and lead data. This algorithm can be coded in gear inspection software to detect the existence, the magnitude and the orientation of the eccentricity without making a separate runout check. A real example shows this algorithm produces good results.

22 The Effect of Material Defects on Gear Perfomance - A Case Study (March/April 2000)

The quality of the material used for highly loaded critical gears is of primary importance in the achievement of their full potential. Unfortunately, the role which material defects play is not clearly understood by many gear designers. The mechanism by which failures occur due to material defects is often circuitous and not readily apparent. In general, however, failures associated with material defects show characteristics that point to the source of the underlying problem, the mechanism by which the failure initiated, and the manner in which it progressed to failure of the component.

23 Involute Inspection Methods and Interpretation of Inspection Results (July/August 1997)

What is so unique about gear manufacturing and inspection? Machining is mostly associated with making either flat or cylindrical shapes. These shapes can be created by a machine's simple linear or circular movements, but an involute curve is neither a straight line nor a circle. In fact, each point of the involute curve has a different radius and center of curvature. Is it necessary to go beyond simple circular and linear machine movements in order to create an involute curve? One of the unique features of the involute is the fact that it can be generated by linking circular and linear movements. This uniqueness has become fertile soil for many inventions that have simplified gear manufacturing and inspection. As is the case with gear generating machines, the traditional involute inspection machines take advantage of some of the involute properties. Even today, when computers can synchronize axes for creating any curve, taking advantage of involute properties can be very helpful. I t can simplify synchronization of machine movements and reduce the number of variables to monitor.

24 Chamfering and Deburring External Parallel Axis Gears (November/December 1996)

The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.

25 geartechnology.com And Other Adventures (July/August 1996)

You've been reading about it, talking about it, maybe even trying it. Gear Technology has jumped aboard it feet first and begun a voyage on the World Wide Web. Beginning with this issue, an electronic version of the magazine will be online. For those of us who still find the fax machine amazing technology, this is a great leap.

26 Plastic Gear Design Basics (July/August 1996)

Plastic gears are serious alternatives to traditional metal gears in a wide variety of applications. The use of plastic gears has expanded from low-power, precision motion transmission into more demanding power transmission applications. As designers push the limits of acceptable plastic gear applications, more is learned about the behavior of plastics in gearing and how to take advantage of their unique characteristics.

27 Wear Protection for Gears (March/April 1996)

Several trends in mechanical engineering are leading to greater surface stress on components and thus to unacceptable wear. These trends include greater stresses due to increased power densities; the need to maintain high precision of components throughout their service life; and the environmental imperative to reduce use of lubricants and additives.

28 Hard Coatings on Contaminated Surfaces - A Case Study (January/February 1997)

Physical Vapor Deposited (PVD) coatings such as TiN (Titanium nitride) have been a boon for cutting tool manufacturers. They reduce wear and, therefore, extend tool life, which in turn reduces production costs. But PVD coatings are expensive, and when they fail, they cost both time and money, and they causes of the failure are not always readily apparent.

29 Gear Heat Treating by Induction (March/April 2000)

The induction hardening and tempering of gears and critical components is traditionally a hot subject in heat treating. In recent years, gear manufacturers have increased their knowledge in this technology for quality gears.

30 Production Increase When Hobbing with Carbide Hobs (January/February 1998)

We are all looking for ways to increase production without sacrificing quality. One of the most cost-effective ways is by improving the substrate material of your hob. Solid carbide hobs are widely used in many applications throughout the world. LMT-Fette was the first to demonstrate the use of solid carbide hobs in 1993 on modern high-speed carbide (HSC) hobbing machines. Since then the process of dry hobbing has been continuously improving through research and product testing. Dry hobbing is proving to be successful in the gear cutting industry as sales for dry hobbing machines have steadily been rising along with the dramatic increase in sales of solid carbide hobs.

31 Gleason Corporation Acquires The Pfauter Group (September/October 1997)

Gleason Corporation has announced that agreement has been reached on all terms to acquire for approximately $36 million in cash the Hermann Pfauter Group, including, among other operations, Hermann Pfauter GmbH & Co., a privately held leading producer of gear equipment based in Ludwigsburg, Germany; its 76% interest in Pfauter-Maad Cutting Tools, a leading cutting tool manufacturer basked in Loves Park, IL; and Pfauter-Maag management's 24% ownership interest in that company. The acquisition includes all assets and liabilities, including the assumption of approximately $56 million in bank debt.

32 The Gear Standards Challenge (September/October 1997)

Who wants or needs technical details about gearing? Who cares about it? Three out of every four people who are reading this magazine make up at least 75% of those who have an interest in the subject. The members of AGMA, EUROTRANS, JGMA and JSIM have an interest. All the people attending the Gear Expo in Detroit have an interest. Clearly, however, the people with the most pressing interest in our industry are our customers, the end users of gear products. The unfortunate reality, though, is that in many cases, these customers don't even know that's what they want.

33 Structural Analysis of Teeth With Asymmetrical Profiles (July/August 1997)

This article illustrates a structural analysis of asymmetrical teeth. This study was carried out because of the impossibility of applying traditional calculations to procedures involved in the specific case. In particular, software for the automatic generation of meshes was devised because existing software does not produce results suitable for the new geometrical model required. Having carried out the structural calculations, a comparative study of the stress fields of symmetrical and asymmetrical teeth was carried out. The structural advantages of the latter type of teeth emerged.

34 Gear Teeth With Byte (January/February 1998)

Computers are everywhere. It's gotten so that it's hard to find an employee who isn't using one in the course of his or her day - whether he be CEO or salesman, engineer or machinist. Everywhere you look, you find the familiar neutral-colored boxes and bright glowing screens. And despite the gear industry's traditional reluctance to embrace new technology, more and moe of what you find on those screens are gears.

35 Water Powered Machinery (January/February 2001)

In one of my many visits to northern New York state, which included the St. Lawrence River (Thousand Islands Region) and the Adirondack Mountains, I visited Croghan, a village on the Beaver River, which is fed by the Stillwater Resevoir in the Adirondack Mountains. At the base of a dam within the village, I found the remnants of a water turbine and a bevel gear drive system. Having worked for The Gleason Works for many years, I was intrigued by the remains of the bevel gears, which appeared to have had wooden teeth at one time.

36 Workholding Options (March/April 2013)

Question: We manufacture some gears that require an axial face as a datum, as well as locating on the bore for centering. Other gears use only the bore for both axial and radial locating. What type of workholding is appropriate for each type of part? Is there workholding that will work for both types?

37 Turn Off the Noise (March/April 2013)

Trying to figure out what’s going on in this crazy economy of ours seems a bit like reading tea leaves—one part pseudoscience and three parts wild conjecture. Of course some pundits are telling us that this bull market has legs, while others insist that we’re due for a major correction. Some pump us up with positive news, while others remind us about scary stuff like the budget deficit, the European financial crisis and unemployment.

38 AGMA FTM: Where Great Minds and Manufacturing Mesh (November/December 2012)

Another year, another AGMA Fall Technical Conference. But this is no ho-hum event. Not when every year, the conference attracts some of the greatest mechanical engineering minds on the planet, along with representatives of the world’s greatest manufacturing entities. And who knows—perhaps one day there will be an extraterrestrial contingent—the science is that good. And all of it readily applicable to real-world manufacturing.

39 If Only We Had a Crystal Ball... (November/December 2012)

Before we get into projections and prognostications about the future, let’s take a minute to review 2012. For many in the gear industry, the year was better than expected. Some manufacturers had a very successful year leading up to an even more successful manufacturing trade show (IMTS 2012). Others were searching for more business, hoping that the general state of the economy wouldn’t make things worse. In some cases, it did.

40 Engineering Questions - SME has the Answers with Knowledge Edge (August 2013)

The Society of Manufacturing Engineers (SME) has been gathering, validating and sharing manufacturing knowledge for more than 80 years. Traditionally, SME resources were purchased by individuals for their own personal use or by colleges and universities as textbooks. Recently, these same colleges and universities were looking for digital resources to provide to their instructors and students. Companies were requesting SME content digitally for their employees as well.

41 Minimal Tooth Number of Flexspline in Harmonic Gear Drive with External Wave Generator (October 2013)

Wave generators are located inside of flexsplines in most harmonic gear drive devices. Because the teeth on the wheel rim of the flexspline are distributed radially, there is a bigger stress concentration on the tooth root of the flexspline meshing with a circular spline, where a fatigue fracture is more likely to occur under the alternating force exerted by the wave generator. The authors' solution to this problem is to place the wave generator outside of the flexspline, which is a scheme named harmonic gear drive (HGD) with external wave generator (EWG).

42 The Pros and Cons of Fully Ground Root Fillets (August 2014)

For maximum life in carburized and ground gearing, I have been advised that fully grinding a radius into the root gives maximum resistance against fatigue failures. Others have advised that a hobbed and unground radius root form is best. Which is best, and why?

43 New ECM Furnace Improves Manufacture Efficiency of PM Components (March/April 2014)

The heat treatment processing of powder metal (PM) materials like Astaloy requires four steps -- de-waxing, HT sintering, carburizing and surface hardening -- which are usually achieved in dedicated, atmospheric furnaces for sintering and heat treat, respectively, leading to intermediate handling operations and repeated heating and cooling cycles. This paper presents the concept of the multi-purpose batch vacuum furnace, one that is able to realize all of these steps in one unique cycle. The multiple benefits brought by this technology are summarized here, the main goal being to use this technology to manufacture high-load transmission gears in PM materials.

44 PPD Wear Protection Treatment for Large Parts Opens New Horizons (March/April 2014)

Environmentally friendly, highly efficient and lasting a product's lifetime. With characteristics like this, Pulsed-Plasma Diffusion (PPD) technology from Oerlikon Balzers has established itself as an industry standard for the treatment of large automotive press tooling. Now the technology specialists are targeting new applications with this advanced process, offering an alternative to traditional hard-chrome processes.

45 The Ever-Evolving Apple Parer (October 2013)

Mike Viney's curiosity about the evolving designs of apple parers began after reading the article, "There's a Fascination in Apple Parers" by Marion Levy, which appeared in the second edition of Linda Campbell's 300 Years of Kitchen Collectibles.

46 Adapting Lean for High-Mix, Low-Volume Manufacturing Facilities (August 2012)

Why traditional lean manufacturing approaches need to be adapted for job shop environments.

47 Stress of Planet Gears with Thin Rims (March/April 1994)

This article discusses the relationships among the fillet stress on a thin rim planet gear, the radial clearance between the gear rim and the gear shaft, the tooth load, the rim thickness, the radius of curvature of the center line of the rim, the face width and the module.

48 Business Ethics Touchstone or Oxymoron (May/June 1995)

"Values" is one of he buzzwords we hear everywhere today. Family values. Traditional values. Alternative values. Along with a balanced budget, less government and more fiber in our diets, "values" - and their practical counterparts, "ethics" - are being promoted as one of the simple, obvious solutions to what ails us as a country and as individuals.

49 Design Against Tooth Interior Fatigue Fracture (November/December 2000)

In a modern truck, the gear teeth are among the most stressed parts. Failure of a tooth will damage the transmission severely. Throughout the years, gear design experience has been gained and collected into standards such as DIN (Ref. 1) or AGMA (Ref. 2). Traditionally two types of failures are considered in gear design: tooth root bending fatigue, and contact fatigue. The demands for lighter and more silent transmissions have given birth to new failure types. One novel failure type, Tooth Interior Fatigue Fracture (TIFF), has previously been described by MackAldener and Olsson (Refs. 3 & 4) and is further explored in this paper.

50 Old World Expertise (November/December 2000)

Dear Editor, I am writing this in response to some articles appearing in your journal, but I want to take the opportunity, also, to express my thanks for all the good work your publication is doing. I always look forward to your next issue being in my mail slot. I know I will find timely technical articles relevant to our manufacturing situation here at Amarillo Gear Co., as well as thought provoking commentary on events and trends affecting our business. The Publisher's Page is always worth the reading.

51 Gear Oil Micropitting Evaluation (September/October 2000)

During the last decade, industrial gear manufacturers, particularly in Europe, began to require documentation of micropitting performance before approving a gear oil for use in their equipment. The development of micropitting resistant lubricants has been limited both by a lack of understanding of the mechanism by which certain lubricant chemistry promotes micropitting and by a lack of readily available testing for evaluation of the micropitting resistance of lubricants. This paper reports results of two types of testing: (1) the use of a roller disk machine to conduct small scale laboratory studies of the effects of individual additives and combinations of additives on micropitting and (2) a helical gear test used to study micropitting performance of formulated gear oils.

52 Measuring Base Helix Error on a Sine Bar (July/August 2001)

Base helix error - the resultant of lead and profile errors is the measured deviation from the theoretical line of contact (Fig. 1). It can be measured in the same way that lead error on a spur gear is measured, namely, by setting a height gage to height H based on the radial distance r to a specified line of contact (Fig. 2), rotating the gear so as to bring a tooth into contact with the indicator on the height gage, and then moving the height gage along two or more normals to the plane of action. The theoretical line of contact on helical gear must be parallel to the surface plate, which is attained by mounting the gear on a sine bar (Fig. 3).

53 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

54 Performance Analysis of Hypoid Gears by Tooth Flank Form Measurement (July/August 2002)

The traditional way of controlling the quality of hypoid gears' tooth flank form is to check the tooth flank contact patterns. But it is not easy to exactly judge the tooth flank form quality by the contact pattern. In recent years, it has become possible to accurately measure the tooth flank form of hypoid gears by the point-to-point measuring method and the scanning measuring method. But the uses of measured data of the tooth flank form for hypoid gears have not yet been well developed in comparison with cylindrical involute gears. In this paper, the tooth flank form measurement of generated face-milled gears, face-hobbed gears and formulate/generated gears are reported. The authors discuss the advantages and disadvantages of scanning and point-to-point measuring of 3-D tooth flank forms of hypoid gears and introduce some examples of uses of measured data for high-quality production and performance prediction.

55 Minimization of In-Process Corrosion of Aerospace Gears (July/August 2002)

Carbon steels have primarily been used to manufacture aerospace gears due to the steels' mechanical characteristics. An alloyed low carbon steel is easily case-hardened to obtain a hard wear surface while maintaining the ductile core characteristics. The microstructure achieved will accept the heavy loading, shocks, and elevated temperatures that gears typically experience in applications. The carbon steel machinability allows for general machining practices to be employed when producing aerospace gears versus the more advanced metal removal processes required by stainless and nickel-based alloys.

56 Carbide Hobbing Case Study (May/June 2002)

Bodine Electric Co. of Chicago, IL., has a 97-year history of fine-and medium-pitch gear manufacturing. Like anywhere else, traditions, old systems, and structures can be beneficial, but they can also become paradigms and obstacles to further improvements. We were producing a high quality product, but our goal was to become more cost effective. Carbide hobbing is seen as a technological innovation capable of enabling a dramatic, rather than an incremental, enhancement to productivity and cost savings.

57 Cleaner, More Energy Efficient: Trends in the Heat Treat Industry (March/April 2002)

an advancing technology and higher energy costs appear to be leading heat-treating companies in the gear industry toward cleaner, more energy-efficient processes. These processes may offer some relief to heat treaters through cooler factories and some relief to their companies through reduced energy usage.

58 The Design and Testing of a Low Noise Marine Gear (May/June 2000)

This article offers an overview of the practical design of a naval gear for combined diesel or gas turbine propulsion (CODOG type). The vibration performance of the gear is tested in a back-to-back test. The gear presented is a low noise design for the Royal Dutch Navy's LCF Frigate. The design aspects for low noise operation were incorporated into the overall gear system design. Therefore, special attention was paid to all the parameters that could influence the noise and vibration performance of the gearbox. These design aspects, such as tooth corrections, tooth loading, gear layout, balance, lubrication and resilient mounting, will be discussed.

59 Generation of Helical Gears with New Surface Topology by Application of CNC Machines (January/February 1994)

Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.

60 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

61 Future Demands Next Generation of Standards and Practices in Gear Industry (May 2010)

Gear manufacturers are moving into an era that will see changes in both engineering practices and industry standards as new end-products evolve. Within the traditional automotive industry, carbon emission reduction legislation will drive the need for higher levels of efficiency and growth in electric and hybrid vehicles. Meanwhile, the fast growing market of wind turbines is already opening up a whole new area of potential for gearbox manufacturers, but this industry is one that will demand reliability, high levels of engineering excellence and precision manufacturing.

62 AGMA--American Name, International Association (May 2010)

AGMA Voices is a new feature brought to you by Gear Technology in cooperation with the American Gear Manufacturers Association. AGMA Voices will give you opinions, insight and information presented by various AGMA staff members, board members, committee heads and volunteers. In this column, Gear Technology will bring you guest editorials from the gear industry’s leading association.

63 The Kinematics of Conical Involute Gear Hobbing (July 2008)

Conical involute gears, also known as beveloid gears, are generalized involute gears that have the two flanks of the same tooth characterized by different base cylinder radii and different base helix angles.

64 Crowning Techniques in Aerospace Actuation Gearing (August 2010)

One of the most effective methods in solving the edge loading problem due to excess misalignment and deflection in aerospace actuation gearing is to localize tooth-bearing contact by crowning the teeth. Irrespective of the applied load, if the misalignment and/or deflection are large enough to cause the contact area to reduce to zero, the stress becomes large enough to cause failure. The edge loading could cause the teeth to break or pit, but too much crowning may also cause the teeth to pit due to concentrated loading. In this paper, a proposed method to localize the contact bearing area and calculate the contact stress with crowning is presented and demonstrated on some real-life examples in aerospace actuation systems.

65 Gear Chamfering Robot (January/February 2011)

Banyan Technologies introduces a robotic chamfering device suitable for deburring, chamfering and radiusing the edges of slew bearing ring gears.

66 Single Flank Testing of Gears (May/June 1984)

Presumably, everyone who would be interested in this subject is already somewhat familiar with testing of gears by traditional means. Three types of gear inspection are in common use: 1) measurement of gear elements and relationships, 2) tooth contact pattern checks and 3) rolling composite checks. Single Flank testing falls into this last category, as does the more familiar Double Flank test.

67 Editorial (May/June 1984)

Over the years, we have traveled extensively throughout the industrialized world, and became increasingly aware of the availability of enormous amounts of technical writing concerning research, experiments, and techniques in the gear manufacturing field. New manufacturing methods, materials, and machines were continuously being developed, but the technical information about them was not readily available to those that could best use it. There was no central source for disseminating this knowledge.

68 Gear Measuring Machine by NDG Method for Gears Ranging from Miniature to Super-Large (March/April 2011)

A new inspection method has several advantages over traditional methods, especially for very large or very small gears.

69 Measurement of Directly Designed Gears with Symmetric and Asymmetric Teeth (January/February 2011)

In comparison with the traditional gear design approach based on preselected, typically standard generating rack parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear measurement methodology. This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical, external and internal gears with symmetric and asymmetric teeth.

70 2007 Holiday Buyers Guide (November/December 2007)

We love gears. We love talking about gears, writing about gears and examining gears. If you’re reading this cover to cover, it’s a safe bet you feel the same way. We also love collecting information for Gear Technology’s holiday buyer's guide. Call us sentimental.

71 Gear Expo 2007 Show Preview (August 2007)

The organizers of Gear Expo 2007 promise to combine the most popular features of shows past with some innovations for this year’s attendees. By the time the show closes on October 10, the association hopes its targeted 175 exhibitors walk away with new insights leading to profitability and renewed contacts.

72 The Design and Manufacture of Machined Plastic Gears (May/June 1985)

The use of plastic gearing is increasing steadily in new products. This is due in part to the availability of recent design data. Fatigue stress of plastic gears as a function of diametral pitch, pressure angle, pitch line velocity, lubrication and life cycles are described based on test information. Design procedures for plastic gears are presented.

73 How Are You Dealing with the Bias Error in Your Helical Gears (May 2009)

This paper initially defines bias error—the “twisted tooth phenomenon.” Using illustrations, we explain that bias error is a by-product of applying conventional, radial crowning methods to produced crowned leads on helical gears. The methods considered are gears that are finished, shaped, shaved, form and generated ground. The paper explains why bias error occurs in these methods and offers techniques used to limit/eliminate bias error. Sometimes, there may be a possibility to apply two methods to eliminate bias error. In those cases, the pros/cons of these methods will be reviewed.

74 Postcard from Gear Expo (November/December 2003)

Where were you? We were hoping to see you here at Gear Expo. We were surprised that you didn't make it. Anyway, we had a really good show, along with more than a hundred other leading companies in the gear industry who exhibited this year.

75 Spiral Bevel and Hypoid Gear Cutting Technology Update (July 2007)

Spiral bevel and hypoid gear cutting has changed significantly over the years. The machines, tools, processes and coatings have steadily advanced.

76 Tooth Fillet Profile Optimization for Gears with Symmetric and Asymmetric Teeth (September/October 2009)

The gear tooth fillet is an area of maximum bending stress concentration. However, its profile is typically less specified in the gear drawing and hardly controlled during gear inspection in comparison with the gear tooth flanks. This paper presents a fillet profile optimization technique for gears with symmetric and asymmetric teeth based on FEA and a random search method. It allows achieving substantial bending stress reduction in comparison with traditionally designed gears. This bending stress reduction can be traded for higher load capacity, longer lifetime, lower noise and vibration and cost reduction.

77 Gear Corrosion During the Manufacturing Process (September/October 2009)

No matter how well gears are designed and manufactured, gear corrosion can occur that may easily result in catastrophic failure. Since corrosion is a sporadic and rare event and often difficult to observe in the root fillet region or in finely pitched gears with normal visual inspection, it may easily go undetected. This paper presents the results of an incident that occurred in a gear manufacturing facility several years ago that resulted in pitting corrosion and intergranular attack (IGA).

78 Gears at Play (November/December 2003)

e-Bay shopping, newspaper reading and excessive e-mailing aren’t a problem for most managers in the gear industry, but now there’s a new employee distraction headed their way.

79 The Effect of Manufaturing Microgeometry Variations on the Load Distribution Factor and on Gear Contact and Root Stresses (July 2009)

Traditionally, gear rating procedures consider manufacturing accuracy in the application of the dynamic factor, but only indirectly through the load distribution are such errors in the calculation of stresses used in the durability and gear strength equations. This paper discusses how accuracy affects the calculation of stresses and then uses both statistical design of experiments and Monte Carlo simulation techniques to quantify the effects of different manufacturing and assembly errors on root and contact stresses.

80 Load Carrying Capacity of Screw Helical Gears with Steel Pinions and Plastic Wheels (July/August 2004)

There is an increasing significance of screw helical and worm gears that combine use of steel and plastics. This is shown by diverse and continuously rising use in the automotive and household appliance industries. The increasing requirements for such gears can be explained by the advantageous qualities of such a material combination in comparison with that of the traditional steel/bronze pairing.

81 Involute Spline Size Inspection (March/April 1985)

This article describes a new technique for the size determination of external Involute splines by using a span measuring method. It provides application performance information demonstrating how this method and its measurements correlate with the traditional spline ring gage sizing method.

82 Maximum Surface Temperature of the Thermoplastic Gear in a Non-Lubricated Plastic-Steel Gear Pair (August/September 1984)

One of the major problems of plastic gear design is the knowledge of their running temperature. Of special interest is the bulk temperature of the tooth to predict the fatigue life, and the peak temperature on the surface of the tooth to avert surface failure. This paper presents the results of an experimental method that uses an infrared radiometer to measure the temperature variation along the profile of a plastic gear tooth in operation. Measurements are made on 5.08, 3.17, 2.54, 2.12 mm module hob cut gears made from nylon 6-6, acetal and UHMWPE (Ultra High Molecular Weight Polyethylene). All the tests are made on a four square testing rig with thermoplastic/steel gear pairs where the plastic gear is the driver. Maximum temperature prediction curves obtained through statistical analysis of the results are presented and compared to data available from literature.

83 Gears for Nonparallel Shafts (September/October 1986)

Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.

84 Recent Developments in Gear Metrology (November/December 1991)

Metrology is a vital component of gear manufacturing. Recent changes in this area, due in large part to the advent of computers, are highlighted in this article by comparison with more traditional methods.

85 Basic Gear Generation Designing the Teeth (September/October 1991)

The finished gear engineer, the man who is prepared for all emergencies, must first of all know the basic design principles. Next he must be well versed in all sorts of calculations which come under the heading of "involute trigonometry."

86 What Is Runout, And Why Should I Worry About It (January/February 1991)

Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout. Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.

87 Manufacturing of Forged and Extruded Gears (July/August 1990)

Traditional methods of manufacturing precision gears usually employ either hobbing or shaper cutting. Both of these processes rely upon generating the conjugate tooth form by moving the work-piece in a precise relation to the tool. Recently, attention has been given to forming gear teeth in a single step. Advantages to such a process include reduced production time, material savings, and improved performance characteristics. Drawbacks include complicated tool designs, non-uniformity of gears produced throughout the life of the tooling, and lengthy development times.

88 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

89 Maximum Life Spiral Bevel Reduction Design (September/October 1993)

Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ration under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque and power. Significant parameters in the design are the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near-optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.

90 Mechanical Behavior and Microstructure of Ausrolled Surfaces in Gear Steels (March/April 1995)

Ausforming, the plastic deformation of heat treatment steels in their metastable, austentic condition, was shown several decades ago to lead to quenched and tempered steels that were harder, tougher and more durable under fatigue-type loading than conventionally heat-treated steels. To circumvent the large forces required to ausform entire components such as gears, cams and bearings, the ausforming process imparts added mechanical strength and durability only to those contact surfaces that are critically loaded. The ausrolling process, as utilized for finishing the loaded surfaces of machine elements, imparts high quality surface texture and geometry control. The near-net-shape geometry and surface topography of the machine elements must be controlled to be compatible with the network dimensional finish and the rolling die design requirements (Ref. 1).

91 CNC Basics (January/February 1995)

NC and CNC machines are at the heart of manufacturing today. They are the state-of-the-art equipment everybody has (or is soon going to get) that promise to lower costs, increase production and turn manufacturers into competitive powerhouses. Like many other high tech devices (such as microwaves and VCRs), lots of people have and use them - even successfully - without really knowing much about how they operate. But upgrading to CNC costs a lot of money, so it's crucial to separate the hype from the reality.

92 CNC Gear Manufacturing - Where Are We Now (January/February 1995)

These days it's hard to get through breakfast without reading or hearing another story about how the computer is changing the way we live, sleep, eat, breathe, make things and do business. The message is that everything is computerized now, or, if it isn't, it will be by next Tuesday at the latest, Well, maybe.

93 Minimizing Backlash in Spur Gears (May/June 1994)

simplified equations for backlash and roll test center distance are derived. Unknown errors in measured tooth thickness are investigate. Master gear design is outlined, and an alternative to the master gear method is described. Defects in the test radius method are enumerated. Procedures for calculating backlash and for preventing significant errors in measurement are presented.

94 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

95 Towards an Improved AGMA Accuracy Classification System on Double-Flank Composite Measurements (June/July 2012)

AGMA introduced ANSI/AGMA 2015–2–A06— Accuracy Classification System: Radial System for Cylindrical Gears, in 2006 as the first major rewrite of the double-flank accuracy standard in over 18 years. This document explains concerns related to the use of ANSI/AGMA 2015–2–A06 as an accuracy classification system and recommends a revised system that can be of more service to the gearing industry.

96 KHV Planetary Gearing (November/December 1987)

Traditionally, a worm or a multi-stage gear box has been used when a large speed ratio is required. However, such boxes will become obsolete as size and efficiency become increasingly important considerations for a modern transmission. The single-enveloped worm gear has a maximum speed ratio of only 40 to 60. Its efficiency is only 30 to 60 per cent. The necessity of using bronze for the worm gear and grinding nitoalloy steel for the worm drives up material and manufacturing costs.

97 Selection of Hobbing Data (November/December 1987)

The art of gear hobbing has advanced dramatically since the development and introduction of unique machine and tool features such as no backlash, super rigidity, automatic loading of cutting tools, CNC controls, additional machine power and improved cutter materials and coatings. It is essential to utilize all these features to run the machine economically.

98 Finishing of Gears by Ausforming (November/December 1987)

Almost all machines or mechanical systems contain precision contact elements such as bearings, cams, rears, shafts, splines and rollers. These components have two important common requirements: first, they must possess sufficient mechanical properties, such as, high hardness, fatigue strength and wear resistance to maximize their performance and life; second, they must be finished to close dimensional tolerances to minimize noise, vibration and fatigue loading.

99 Gear Manufacturing Methods - Forming the Teeth (January/February 1987)

The forming of gear teeth has traditionally been a time-consuming heavy stock removal operation in which close tooth size, shape, runout and spacing accuracy are required. This is true whether the teeth are finished by a second forming operation or a shaving operation.

100 Contact Surface Topology of Worm Gear Teeth (March/April 1988)

Among the various types of gearing systems available to the gear application engineer is the versatile and unique worm and worm gear set. In the simpler form of a cylindrical worm meshing at 90 degree axis angle with an enveloping worm gear, it is widely used and has become a traditional form of gearing. (See Fig. 1) This is evidenced by the large number of gear shops specializing in or supplying such gear sets in unassembled form or as complete gear boxes. Special designs as well as standardized ratio sets covering wide ratio ranges and center distanced are available with many as stock catalog products.

101 Editorial (March/April 1989)

At the time I'm writing this editorial, the new year is barely two weeks old. The air and the papers are still full of those inevitable end-of-the-year estimates of how far we've come in one area or another and how far we have to go. Analyses of the future, both grim and humorous, abound. There are even more of these laundry lists of PROBLEMS TO BE SOLVED IMMEDIATELY than usual, since a new president will be inaugurated in a week or so. Everyone had advice for George Bush on what to do first and how to do it. Some of the advice is sound, and I hope he's listening; however, reading all these position papers can be a depressing exercise.

102 Compter-Aided Spur Gear Tooth Design: An Application-Driven Approach (November/December 1989)

This article discusses an application driven approach to the computer-aided sizing of spur gear teeth. The methodology is bases on the index of tooth loading and environment of application of the gear. It employs handbook knowledge and empirical information to facilitate the design process for a novice. Results show that the approach is in agreement with the textbook data. However, this technique requires less expert knowledge to arrive at the conclusion. The methodology has been successfully implemented as a gear tooth sizing module of a parallel axis gear drive expert system.

103 Into-Mesh Lubrication of Spur Gears - Part 2 (July/August 1989)

In the lubrication and cooling of gear teeth a variety of oil jet lubrication schemes is sometimes used. A method commonly used is a low pressure, low velocity oil jet directed at the ingoing mesh of the gears, as was analyzed in Reference 1. Sometimes an oil jet is directed at the outgoing mesh at low pressures. It was shown in Reference 2 that the out-of-mesh lubrication method provides a minimal impingement depth and low cooling of the gears because of the short fling-off time and fling-off angle.(3) In References 4 and 5 it was shown that a radially directed oil jet near the out-of-mesh position with the right oil pressure was the method that provided the best impingement depth.

104 Into-Mesh Lubrication of Spur Gears - Part I (May/June 1989)

Several methods of oil jet lubrication of gears are practiced by the gear industry. These include the oil jet directed into the mesh, out of the mesh and radially directed into the gear teeth. In most cases an exact analysis is not used to determine the optimum condition such as, jet nozzle location, direction and oil jet velocity, for best cooling. As a result many gear sets are operating without optimum oil jet lubrication and cooling.

105 Long-Life, Low-cost, Near-Net-Shape forged Gears (May/June 1995)

Near-net gear forging today is producing longer life gears at significantly lower costs than traditional manufacturing techniques. Advances in forging equipment, controls and die-making capability have been combined to produce commercially viable near-net-shape gears in diameters up to 17" with minimum stock allowances. These forged gears require only minimal finishing to meet part tolerance specifications.

News Items About ADI

1 Honing System Allows Robotic Part Loading of Landing Gear Components (July 24, 2008)
The SVC-310 vertical CNC honing system from Sunnen sizes small and medium gas/diesel engine blocks, large gears, air compressors, aerosp... Read News

2 mG miniGears Installs Furnace Loading System (June 25, 2007)
mG miniGears installed a furnace loading system in its powder metal department to avoid defects, especially for gears where small damage of the... Read News

3 Philadelphia Gear Hires Canadian Rep (April 2, 2004)
Gaetan Perron was hired as the sales representative for established Philadelphia Gear customers in Canada and for prospects in eastern On... Read News

4 SCHUNK Offers New Sealed DRG Two-Finger Radial Gripper (June 1, 2010)
The new DRG Two-Finger Radial Gripper from SCHUNK is utilized for difficult handling tasks. The gripper is used in dirty working environm... Read News

5 Sandvik Offers Pitch-Perfect Threading Event (April 22, 2011)
Sandvik Coromant, a producer of cutting tools for the metal cutting industry, has announced that it will be holding a "Pitch-Perfect... Read News

6 Norton Paradigm and CBN Wheels Provide High Performance (May 23, 2012)
Saint-Gobain Abrasives has recently introduced Norton Paradigm Diamond and CBN Wheels which are positioned in the "Best" tier o... Read News

7 Ipsen Offers Corrosion Prevention With Ivadizer (January 18, 2012)
Whether your business is fasteners or aerospace components Ipsen's Ivadizer is the Ion Vapor Deposition (IVD) vacuum vessel you need.... Read News

8 Ipsen Awarded Patent on Vacuum Loading System (June 6, 2014)
Ipsen was recently awarded U.S. Patent No. 8,662,888 B2 for the development of a new loading system. Chief Engineer Craig Moller, the nam... Read News