Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

Ann Arbor Machine - Search Results

Articles About Ann Arbor Machine


1 Special Machine Manufacturer Brings Gear Making In-House (September/October 1997)

When you have a multi-million-dollar transfer line sitting on the shop floor waiting for gears that might take up to two months to get, you have a costly bottleneck.

2 Dry Gear Hobbing (July/August 1995)

Question: We are contemplating purchasing a hobbing machine with dry hobbing capabilities. What do we need to know about the special system requirements for this technology?

3 A Basic Guide to Deburring and Chamfering Gears (July/August 1995)

In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.

4 New Concepts in CNC Gear Shaping (July/August 1995)

In today's economy, when purchasing a new state-of-the-art gear shaper means a significant capital investment, common sense alone dictates that you develop strategies to get the most for your money. One of the best ways to do this is to take advantage of the sophistication of the machine to make it more than just a single-purpose tool.

5 Gear Grinding 1995 (July/August 1995)

Gear grinding is one of the most expensive and least understood aspects of gear manufacturing. But with pressures for reduced noise, higher quality and greater efficiency, gear grinding appears to be on the rise.

6 New Gear Developments at IMTS (November/December 1996)

The International Manufacturing Technology Show provided one of the biggest ever marketplaces for buying and selling gear-making equipment, with 121601 attenders, making it the largest IMTS ever. The show took place September 4-11 at McCormick Place in Chicago, IL.

7 The Broaching of Gears (March/April 1997)

Broaching is a process in which a cutting tool passes over or through a part piece to produce a desired form. A broach removes part material with a series of teeth, each one removing a specified amount of stock.

8 Chamfering and Deburring External Parallel Axis Gears (November/December 1996)

The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.

9 Gear Grinding Comes of Age (July/August 1995)

In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.

10 Avoiding Interference In Shaper-Cut Gears (January/February 1996)

In the process of developing gear trains, it occasionally occurs that the tip of one gear will drag in the fillet of the mating gear. The first reaction may be to assume that the outside diameter of the gear is too large. This article is intended to show that although the gear dimensions follow AGMA guidelines, if the gear is cut with a shaper, the cutting process may not provide sufficient relief in the fillet area and be the cause of the interference.

11 CNC Software Savvy (May/June 1995)

Question: When we purchase our first CNC gear hobbing machine, what questions should we ask about the software? What do we need to know to correctly specify the system requirements?

12 CNC Gear Manufacturing - Where Are We Now (January/February 1995)

These days it's hard to get through breakfast without reading or hearing another story about how the computer is changing the way we live, sleep, eat, breathe, make things and do business. The message is that everything is computerized now, or, if it isn't, it will be by next Tuesday at the latest, Well, maybe.

13 Computers and Automation Lead IMTS Innovations (November/December 1994)

Robots, computers and other signs of high technology abounded at IMTS 94, supporting the claim by many that this was one of the best shows ever. Many of the machines on display had so many robotic attachments and computer gizmos that they looked more like they belonged in some science fiction movie than on the floor of a machine shop.

14 Gear Hobbing Without Coolant (November/December 1994)

For environmental and economic reasons, the use of coolant in machining processes is increasingly being questioned. Rising coolant prices and disposal costs, as well as strains on workers and the environment, have fueled the debate. The use of coolant has given rise to a highly technical system for handling coolant in the machine (cooling, filtering) and protecting the environment (filter, oil-mist collector). In this area the latest cutting materials - used with or without coolant - have great potential for making the metal-removal process more economical. The natural progression to completely dry machining has decisive advantages for hobbing.

15 CNC Basics (January/February 1995)

NC and CNC machines are at the heart of manufacturing today. They are the state-of-the-art equipment everybody has (or is soon going to get) that promise to lower costs, increase production and turn manufacturers into competitive powerhouses. Like many other high tech devices (such as microwaves and VCRs), lots of people have and use them - even successfully - without really knowing much about how they operate. But upgrading to CNC costs a lot of money, so it's crucial to separate the hype from the reality.

16 The Second Edition... (March/April 1995)

Gearing for Munchkins Gene Kasten, president of Repair Parts, Inc., of Rockford, IL, is the proud owner of a miniature Barber-Colman hobber, the only one of its kind in the world. The machine, a replica of the old B-C "A" machine, was built between 1933 and 1941 by W. W. Dickover, who devoted 2, 640 hours of his spare time to the project.

17 Addendum III - The Return (May/June 1995)

Gear Technology's bimonthly aberration - gear trivia, humor, weirdness and oddments for the edification and amusement of our readers. Contributions are welcome.

18 What to Look For Before You Leap (March/April 1995)

Question: We are interested in purchasing our first gear hobbing machine. What questions should we ask the manufacturer, and what do we need to know in order to correctly specify the CNC hardware and software system requirements?

19 Basic Honing & Advanced Free-Form Honing (July/August 1997)

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

20 Thermal Effects on CMMs (September/October 1997)

The trend toward moving coordinate measuring machines to the shop floor to become an integral part of the manufacturing operations brings real time process control within the reach of many companies. Putting measuring machines on the shop floor, however, subjects them to harsh environmental conditions. Like any measuring system, CMMs are sensitive to any ambient condition that deviates from the "perfect" conditions of the metrology lab.

21 The Art of Versatility - Grinding at Gear Expo and EMO (October 2013)

Whether you spent time at Gear Expo in Indianapolis or EMO in Hannover, there was certainly new technology attracting attention. Machine tools are faster, more efficient and can integrate numerous functions in a single setup. Grinding technology is turning science upside down and inside out with high-speed removal rates and increased throughput.

22 Industry News (June/July 2013)

The complete Industry News section from the June/July 2013 issue of Gear Technology.

23 If You Rebuild It, They Will Buy It (May 2013)

It’s been said that the best ideas are often someone else's. But with rebuilt, retrofitted, re-controlled or remanufactured machine tools, buyer beware and hold onto your wallet. Sourcing re-work vendors and their services can require just as much homework, if not necessarily dollars, as with just-off-the-showroom-floor machines.

24 Industry News (November/December 2013)

The complete Industry News section from the November/December 2013 issue of Gear Technology.

25 GT Extras (January/February 2014)

Video from C&B Machinery; Introducing the Gear Technology Blog, featuring technical editor Charles D. Schultz; plus an online-exclusive article on big gear inspection.

26 Machine Marks on Gear Flanks (May 2014)

What causes shaving cutter marks on gear flanks and can they be prevented?

27 Moving Parts (May 2014)

Machine tools boost speed and throughput with automation technology.

28 In Search of a Competitive Advantage (March/April 2014)

The grinding/abrasives market is rapidly changing, thanks to new technology, more flexibility and an attempt to lower customer costs. Productivity is at an all-time high in this market, and it’s only going to improve with further R&D. By the time IMTS 2014 rolls around this September, the gear market will have lots of new toys and gadgets to offer potential customers. If you haven’t upgraded any grinding/abrasives equipment in the last five years, now might be a good time to consider the investment.

29 Liebherr LFG Grinding Machine (May 2013)

This machine concept facilitates highly productive profile grinding for large workpieces. The range for external and internal gears comprises models for manufacturing workpieces up to 2,000 millimeters – for industrial gear units, wind power, and marine propulsion applications

30 Balancing: Smoke and Mirrors No Longer (January/February 2013)

By virtue of collected anecdotal accounts, equations and problem solving, balancing is discussed as more math and common sense, and less smoke and mirrors.

31 Back in the Good Old Days (September/October 1998)

Come with us now to those thrilling days of yesteryear...Ok, this is not the Cisco Kid, but we do have a little game for you. Guess the year the following advertisements and excerpt were printed - they all appeared in a dingle issue of Machinery Magazine.

32 Dry Cutting of Bevel and Hypoid Gears (May/June 1998)

High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.

33 New Guideless CNC Shaper for Helical Gears (March/April 1998)

Product announcements so often trumpet minor, incremental advances with works like "revolutionary" and "unique" that even the best thesaurus can fail to offer a fresh alternative to alert the reader when something really innovative and important is introduced. In the case of Mitsubishi's new CNC gear shaper, the ST25CNC, both terms apply.

34 IMTS 2012 Product Preview (August 2012)

Booth previews from exhibitors showing products and services for the gear industry.

35 IMTS 2012 Product Preview (September 2012)

Previews of manufacturing technology related to gears that will be on display at IMTS 2012.

36 Gear Shaving Basics - Part I (November/December 1997)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.

37 Industry News (November/December 2012)

The complete Industry News section from the November/December 2012 issue of Gear Technology.

38 Industry News (October 2012)

The complete Industry News section from the October 2012 issue of Gear Technology.

39 Innovative CNC Gear Shaping (January/February 1994)

The Shaping Process - A Quick Review of the Working Principle. In the shaping process, cutter and workpiece represent a drive with parallel axes rotating in mesh (generating motion) according to the number of teeth in both cutter and workpiece (Fig. 1), while the cutter reciprocates for the metal removal action (cutting motion).

40 Grinding Bevel Gears on Cylindrical Gear Grinding Machines (January/February 1994)

Power train designs which employ gears with cone angles of approximately 2 degrees to 5 degrees have become quite common. It is difficult, if not impossible, to grind these gears on conventional bevel gear grinding machines. Cylindrical gear grinding machines are better suited for this task. This article will provide an overview of this option and briefly introduce four grinding variation possibilities.

41 Why do Customers Want to Reinvent OUR Wheel (June 2007)

Over many years of being in the machine tool business, it has been interesting to observe the way we suppliers are forced to quote and sell machine tools to many large companies.

42 Dearborn Precision Puts Dual Purpose Zeiss CMM to the Task (May 2011)

When parts you manufacture pass through numerous processes such as deep hole drilling, machining, hobbing and grinding, a CMM is essential when your customers require 100 percent in-process and final inspection.

43 Proverbs (June 2014)

Publisher Michael Goldstein describes what it means to him that Gear Technology is celebrating its 30th anniversary.

44 Product News (May 2009)

The complete Product News section from the May 2009 issue of Gear Technology.

45 Crossroads and Transitions - Part II (July 2009)

The auction has been held. The warehouse is bare. The computers and furniture are being packed, and Cadillac Machinery, the company started by my father in 1950, and of which I was president for more than 25 years, is close to being no more.

46 HMC Lassos World's Largest Gear Grinder (June 2008)

Hofler Rapid 6000 Makes North American Debut at Highway Machine Company.

47 Reinvesting in New Equipment Pays Dividends (November/December 2007)

Recently, I was approached by a colleague who is a manufacturer outside the gear industry...

48 Application of Statistical Stability and Capability for Gear Cutting Machine Acceptance Criteria (November/December 2003)

Machine tool manufacturers supplying machines to the gearing world have been in existence for many years. The machines have changed, and so has the acceptance criteria for the machines.

49 The Past, Present and Future of Gear Manufacturing (June 2014)

The gear industry is full of storytellers. It's a niche market that boasts a remarkable cast of characters that have been sharing their stories with us for 30 years. In that time, the editors and staff of Gear Technology magazine have had the privilege to report the ins and outs of this highly-specialized industry. From technical articles to case studies and features, the main focus of this magazine has been to "provide a forum of discovery and innovation for you, the gear manufacturing industry." Our Publisher, Michael Goldstein, said as much in our inaugural issue of May/June 1984.

50 Super-Sized Quality Control (January/February 2014)

It's not easy being big. Maybe that's not exactly how the phrase goes, but it's applicable, particularly when discussing the quality requirements of large gears. The size alone promises unique engineering challenges. BONUS Online Exclusive: Big or Small - Inspection is Key to Success.

51 Wind, Alt-Energy Themes Sweep Through Hannover Fairgrounds (March/April 2009)

As an indicator of what’s up-and-coming in the manufacturing technology world, Hannover Messe 2009 reflects the prominence of alternative energy and efficiency.

52 Celebrating 20 Years (May/June 2004)

A look back at Gear Technology's first 20 years and how the gear industry has changed.

53 Reflections (May/June 2004)

When a man looks into a mirror, the image reflects who he is today. But it also reveals who he used to be. Although appearances change, many of the underlying characteristics remain the same. The same is true with Gear Technology, as we celebrate our 20th anniversary and reflect on who we are.

54 Tapping Into Technology at Hannover 2008 (March/April 2008)

It’s safe to say Hannover Fair 2008 is big, and we’re not just talking square feet or the number of exhibitors/attendees.

55 Gleason Corporation Acquires The Pfauter Group (September/October 1997)

Gleason Corporation has announced that agreement has been reached on all terms to acquire for approximately $36 million in cash the Hermann Pfauter Group, including, among other operations, Hermann Pfauter GmbH & Co., a privately held leading producer of gear equipment based in Ludwigsburg, Germany; its 76% interest in Pfauter-Maad Cutting Tools, a leading cutting tool manufacturer basked in Loves Park, IL; and Pfauter-Maag management's 24% ownership interest in that company. The acquisition includes all assets and liabilities, including the assumption of approximately $56 million in bank debt.

56 Pearls of Wisdom (January/February 2014)

Gear Technology magazine begins the celebration of our 30-year anniversary.

57 Industry News (March/April 2013)

The complete Industry News section from the March/April 2013 issue of Gear Technology.

58 My Gear Is Bigger than Your Gear (March/April 2013)

Industry battles it out for World's Largest Gear title.

59 All-in-One Broaching Capability (January/February 2010)

Faster, more efficient manufacturing offered with table-top design from American Broach & Machine.

60 Producing Profile and Lead Modifications in Threaded Wheel and Profile Grinding (January/February 2010)

Modern gearboxes are characterized by high torque load demands, low running noise and compact design. In order to fulfill these demands, profile and lead modifications are being applied more often than in the past. This paper will focus on how to produce profile and lead modifications by using the two most common grinding processes—threaded wheel and profile grinding. In addition, more difficult modifications—such as defined flank twist or topological flank corrections—will also be described in this paper.

61 Sicmat Releases Raso 200 Dynamic Shaving Machine (November/December 2011)

The Raso 200 Dynamic has been developed to offer all the characteristics of a gear shaving machine with a competitive price.

62 Liebherr's LDF350 Offers Complete Machining in New Dimension (November/December 2011)

The objective, according to Dr.- Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.

63 EMO Hannover - More than Machine Tools (October 2011)

Some gear-related highlights from the recent EMO show in Hannover, Germany.

64 ...And from the Industry (October/November 1984)

Industry News from October/November 1984 Gear Technology.

65 SPC Acceptance of Hobbing & Shaping Machines (September/October 1991)

Today, as part of filling a typical gear hobbing or shaping machine order, engineers are required to perform an SPC acceptance test. This SPC test, while it is contractually necessary for machine acceptance, is not a machine acceptance test. It is a process capability test. It is an acceptance of the machine, cutting tool, workholding fixture, and workpiece as integrated on the cutting machine, using a gear measuring machine, with its work arbor and evaluation software, to measure the acceptance elements of the workpiece.

66 CNC Bevel Gear Generators and Flared Cup Gear Grinding (July/August 1993)

New freedom of motion available with CNC generators make possible improving tooth contact on bevel and hypoid gears. Mechanical machines by their nature are inflexible and require a special mechanism for every desired motion. These mechanisms are generally exotic and expensive. As a result, it was not until the introduction of CNC generators that engineers started exploring motion possibilities and their effect on tooth contact.

67 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

68 Grinding of Spur and Helical Gears (July/August 1992)

Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.

69 Reliable and Efficient Skiving (September 2011)

Klingelnberg's new tool and machine concept allow for precise production.

70 State-of-the-Art Broaching (August 2011)

There are a number of companies working to change the way broaching is perceived, and over the past 10 years, they’ve incorporated significant technological changes to make the process more flexible, productive and accurate.

71 Gear Finishing by Shaving, Rolling and Honing, Part I (March/April 1992)

There are several methods available for improving the quality of spur and helical gears following the standard roughing operations of hobbing or shaping. Rotary gear shaving and roll-finishing are done in the green or soft state prior to heat treating.

72 The Road Leads Straight to Hypoflex (March/April 2010)

A new method for cutting straight bevel gears.

73 New Developments in Gear Hobbing (March/April 2010)

Several innovations have been introduced to the gear manufacturing industry in recent years. In the case of gear hobbing—the dry cutting technology and the ability to do it with powder-metallurgical HSS—might be two of the most impressive ones. And the technology is still moving forward. The aim of this article is to present recent developments in the field of gear hobbing in conjunction with the latest improvements regarding tool materials, process technology and process integration.

74 Gear Finishing by Shaving, Rolling and Honing, Part II (May/June 1992)

Part I of this series focused on gear shaving, while Part II focuses on gear finishing by rolling and honing.

75 Gear Shaving Basics, Part II (January/February 1998)

In our last issue, we covered the basic principles of gear shaving and preparation of parts for shaving. In this issue, we will cover shaving methods, design principles and cutter mounting techniques.

76 Gear Hobbing Technology Update (June/July 2011)

Q&A with Liebherr's Dr. Alois Mundt.

77 Grinding, Finishing and Software Upgrades Abound (March/April 2011)

Machine tool companies are expanding capabilities to better accommodate the changing face of manufacturing. Customers want smaller-sized equipment to take up less valuable floor space, multifunctional machines that can handle a variety of operations and easy set-up changes that offer simplified operation and maintenance.

78 The Gear Hobbing Process (January/February 1994)

Gear hobbing is a generating process. The term generating refers to the fact that the gear tooth form cut is not the conjugate form of the cutting tool, the hob. During hobbing both the hob and the workpiece rotate in a continuous rotational relationship. During this rotation, the hob is typically fed axially with all the teeth being gradually formed as the tool traverses the work face (see Fig. 1a).