Case Corp - Search Results

Articles About Case Corp


Articles are sorted by RELEVANCE. Sort by Date.

1 Industry News (June 2015)

News from Around the Gear Industry

2 Product News (March/April 2015)

The complete Product News section from the March/April 2015 issue of Gear Technology.

3 Product News (July 2015)

News on the latest Products from the Industry

4 Product News (August 2015)

News about the newest products from the Gear Industry

5 Gear Backlash Analysis of Unloaded Gear Pairs in Transmissions (June 2016)

A best practice in gear design is to limit the amount of backlash to a minimum value needed to accommodate manufacturing tolerances, misalignments, and deflections, in order to prevent the non-driving side of the teeth to make contact and rattle. Industry standards, such as ANSI/AGMA 2002 and DIN3967, provide reference values of minimum backlash to be used in the gear design. However, increased customers’ expectations in vehicle noise eduction have pushed backlash and allowable manufacturing tolerances to even lower limits. This is especially true in the truck market, where engines are quieter because they run at lower speeds to improve fuel economy, but they quite often run at high torsional vibration levels. Furthermore, gear and shaft arrangements in truck transmissions have become more complex due to increased number of speeds and to improve efficiency. Determining the minimum amount of backlash is quite a challenge. This paper presents an investigation of minimum backlash values of helical gear teeth applied to a light-duty pickup truck transmission. An analytical model was developed to calculate backlash limits of each gear pair when not transmitting load, and thus susceptible to generate rattle noise, through different transmission power paths. A statistical approach (Monte Carlo) was used since a significant number of factors affect backlash, such as tooth thickness variation; center distance variation; lead; runout and pitch variations; bearing clearances; spline clearances; and shaft deflections and misalignments. Analytical results identified the critical gear pair, and power path, which was confirmed experimentally on a transmission. The approach presented in this paper can be useful to design gear pairs with a minimum amount of backlash, to prevent double flank contact and to help reduce rattle noise to lowest levels.

6 All-For-One, One-For-All (May 2016)

The “less is more” mantra is certainly a rallying cry in manufacturing. Technologies like multiaxis machining, 3D printing and automation are enabling companies to be more efficient, cost-conscious and flexible on the shop floor.

7 Product News (November/December 2014)

The complete Product News section from the November/December 2014 issue.

8 Gleason Corporation Acquires The Pfauter Group (September/October 1997)

Gleason Corporation has announced that agreement has been reached on all terms to acquire for approximately $36 million in cash the Hermann Pfauter Group, including, among other operations, Hermann Pfauter GmbH & Co., a privately held leading producer of gear equipment based in Ludwigsburg, Germany; its 76% interest in Pfauter-Maad Cutting Tools, a leading cutting tool manufacturer basked in Loves Park, IL; and Pfauter-Maag management's 24% ownership interest in that company. The acquisition includes all assets and liabilities, including the assumption of approximately $56 million in bank debt.

9 Metallurgical Aspects to be Considered in Gear and Shaft Design (March/April 1999)

In his Handbook of Gear Design (Ref.1), Dudley states (or understates): "The best gear people around the world are now coming to realize that metallurgical quality is just as important as geometric quality." Geometric accuracy without metallurgical integrity in any highly stressed gear or shaft would only result in wasted effort for all concerned - the gear designer, the manufacturer, and the customer - as the component's life cycle would be prematurely cut short. A carburized automotive gear or shaft with the wrong surface hardness, case depth or core hardness may not even complete its basic warranty period before failing totally at considerable expense and loss of prestige for the producer and the customer. The unexpected early failure of a large industrial gear or shaft in a coal mine or mill could result in lost production and income while the machine is down since replacement components may not be readily available. Fortunately, this scenario is not common. Most reputable gear and shaft manufacturers around the world would never neglect the metallurgical quality of their products.

10 Endurance Limit for Contact Stress in Gears (October/November 1984)

With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.

11 Large Scores and Radial Cracks on Case-Hardened Worms (May/June 2003)

In the last couple of years, many research projects dealt with the determination of load limits of cylindrical worm gears. These projects primarily focused on the load capacity of the worm wheel, whereas the worm was neglected. This contribution presents investigations regarding damages such as large scores and cracks on the flanks of case-hardened worms.

12 Delivering Big Gears Fast (May 2013)

When a customer needed gears delivered in three weeks, here’s how Brevini Wind got it done.

13 Practical Approach to Determining Effective Case Depth of Gas Carburizing (March/April 2016)

Effective case depth is an important factor and goal in gas carburizing, involving complicated procedures in the furnace and requiring precise control of many thermal parameters. Based upon diffusion theory and years of carburizing experience, this paper calculates the effective case depth governed by carburizing temperature, time, carbon content of steel, and carbon potential of atmosphere. In light of this analysis, carburizing factors at various temperatures and carbon potentials for steels with different carbon content were calculated to determine the necessary carburizing cycle time. This methodology provides simple (without computer simulation) and practical guidance of optimized gas carburizing and has been applied to plant production. It shows that measured, effective case depth of gear parts covering most of the industrial application range (0.020 inch to over 0.250 inch) was in good agreement with the calculation.

14 Systematic Investigations on the Influence of Case Depth on the Pitting and Bending Strength of Case Carburized Gears (July/August 2005)

The gear designer needs to know how to determine an appropriate case depth for a gear application in order to guarantee the required load capacity.