Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

Gleason Cutting Tools - Search Results

Related Companies

Gleason Cutting Tools Corporation
Wherever superior gear performance is needed -- from hand-held power tools to super tankers, from automobiles to aircraft -- Gleason Cutting Tools Corporation gear tools are at work, helping raise the standard of bevel and cylindrical gear manufacturing to levels unimaginable just a few years ago.

Articles About Gleason Cutting Tools


1 Reinventing Cutting Tool Production at Gleason (May 2013)

Investment in advanced new manufacturing technologies is helping to reinvent production processes for bevel gear cutters and coarse-pitch hobs at Gleason - delivering significant benefits downstream to customers seeking shorter deliveries, longer tool life and better results.

2 Tool Life and Productivity Improvement Through Cutting Parameter Setting and Tool Design in Dry High-Speed Bevel Gear Tooth Cutting (May/June 2006)

This article presents some of the findings of cutting investigations at WZL in which the correlation of cutting parameters, cutting materials, tool geometry and tool life have been determined.

3 The New Freedoms: Bevel Blades (September/October 2007)

Today, because of reduced cost of coatings and quicker turnaround times, the idea of all-around coating on three-face-sharpened blades is again economically viable, allowing manufacturers greater freedoms in cutting blade parameters, including three-face-sharpened and even four-face-sharpened blades.

4 Big Gears Better and Faster (January/February 2011)

Indexable carbide insert cutting tools for gears are nothing new. But big gears have recently become a very big business. The result is that there's been a renewed interest in carbide insert cutting tools.

5 Advantages of Titanium Nitride Coated Gear Tools (May/June 1984)

A brief introduction to the subject of Thin Film Coatings and their application to gear hobs and shaper cutters is followed by a detailed description of the Chemical Vapor Deposition Process and the Physical Vapor Deposition Process. Advantages and disadvantages of each of these processes is discussed. Emphasis is placed upon: application engineering of coated gear tools based on laboratory and field test results. Recommendations are suggested for tool design improvements and optimization of gear cutting operations using coated tools. Productivity improvements potentially available by properly utilizing coated tools are considered in terms of both tool cost and machining cost.

6 Gear Generating Using Rack Cutters (October/November 1984)

Universal machines capable of cutting both spur and helical gears were developed in 1910, followed later by machines capable of cutting double helical gears with continuous teeth. Following the initial success, the machines were further developed both in England and France under the name Sunderland, and later in Switzerland under the name Maag.

7 Hard Gear Processing with Skiving Hobs (March/April 1985)

As we approach the problem of hard gear processing, it is well to take a look at the reason for discussing it at this time. In our present economic atmosphere throughout the world, more and more emphasis is being placed upon efficiency which is dictated by higher energy costs.

8 Full Speed Ahead (May 2012)

Indexable carbide insert (ICI) cutting tools continue to play a pivotal role in gear manufacturing. By offering higher cutting speeds, reduced cycle times, enhanced coatings, custom configurations and a diverse range of sizes and capabilities, ICI tools have proven invaluable for finishing and pre-grind applications. They continue to expand their unique capabilities and worth in the cutting tool market.

9 Hob Tool Life Technology Update (March/April 2009)

The method of cutting teeth on a cylindrical gear by the hobbing process has been in existence since the late 1800s. Advances have been made over the years in both the machines and the cutting tools used in the process. This paper will examine hob tool life and the many variables that affect it. The paper will cover the state-of-the-art cutting tool materials and coatings, hob tool design characteristics, process speeds and feeds, hob shifting strategies, wear characteristics, etc. The paper will also discuss the use of a common denominator method for evaluating hob tool life in terms of meters (or inches) per hob tooth as an alternative to tool life expressed in parts per sharpening.

10 New Potentials in Carbide Hobbing (January/February 2004)

To meet the future goals of higher productivity and lower production costs, the cutting speeds and feeds in modern gear hobbing applications have to increase further. In several cases, coated carbide tools have replaced the commonly used high speed steel (HSS) tools.

11 General Equations for Gear Cutting Tool Calculations (November/December 1985)

The proper design or selection of gear cutting tools requires thorough and detailed attention from the tool designer. In addition to experience, intuition and practical knowledge, a good understanding of profile calculations is very important.

12 Hob Length Effects (September/October 1985)

Hobbing is probably the most popular gear manufacturing process. Its inherent accuracy and productivity makes it a logical choice for a wide range of sizes.

13 Shaper Cutters-Design & Applications Part 1 (March/April 1990)

Gear shaping is one of the most popular production choices in gear manufacturing. While the gear shaping process is really the most versatile of all the gear manufacturing methods and can cut a wide variety of gears, certain types of gears can only be cut by this process. These are gears closely adjacent to shoulders; gears adjacent to other gears, such as on countershafts; internal gears, either open or blind ended; crown or face gears; herringbone gears of the solid configuration of with a small center groove; rack; parts with filled-in spaces or teeth, such as are used in some clutches.

14 Tooth Forms for Hobs (March/April 1985)

The gear hobbing process is a generating type of production operation. For this reason, the form of the hob tooth is always different from the form of the tooth that it produces.

15 Shaper Cutters - Design & Application - Part 2 (May/June 1990)

Cutter Sharpening Cutter sharpening is very important both during manufacturing and subsequently in resharpening after dulling. Not only does this process affect cutter "over cutting edge" quality and the quality of the part cut, but it can also affect the manner in which chip flow takes place on the cutter face if the surface finished is too rough or rippled.

16 IMTS 2012 Product Preview (September 2012)

Previews of manufacturing technology related to gears that will be on display at IMTS 2012.

17 IMTS 2012 Product Preview (August 2012)

Booth previews from exhibitors showing products and services for the gear industry.

18 Progress in Gear Milling (January/February 2013)

Sandvik presents the latest in gear milling technologies.

19 Heavy-Duty Demands - Modern Coating Technology Examined (May 2013)

The hob is a perfect example of how a little manufacturing ingenuity can make a reliable, highly productive cutting tool. It's an engineering specimen that creates higher cutting speeds, better wear resistance and increases rigidity. The cutting tool alone, however, can't take all the credit for its resourcefulness. Advanced coating technology from companies like Sulzer, Oerlikon Balzers, Ionbond, Seco Tools and Cemecon helps improve cutting tools by reducing overall costs, increasing tool life and maintaining the highest levels of productivity. The following is a quick recap of new technologies and the latest information in the coating market.

20 The Influence of Tool Tolerances on the Gear Quality of a Gear Manufactured by an Indexable Insert Hob (July 2014)

Recently, a new type of hob with carbide inserts has been introduced, providing higher cutting speeds, longer tool life and higher feed rates when compared to re-grindable, high-speed steel hobs. But with this kind of hob, new challenges occur due to positional errors of the cutting edges when mounted on the tool. These errors lead to manufacturing errors on the gear teeth which must be controlled. In this paper, the tooth quality of a gear manufactured by hobs with different quality classes is analyzed using a simulation model in combination with Monte Carlo methods.

21 Hobs & Form Relived Cutters: Common Sharpening Problems (May/June 1998)

Fig. 1 shows the effects of positive and negative rake on finished gear teeth. Incorrect positive rake (A) increase the depth and decreases the pressure angle on the hob tooth. The resulting gear tooth is thick at the top and thin at the bottom. Incorrect negative rake (B) decreases the depth and increases the pressure angle. This results in a cutting drag and makes the gear tooth thin at the top and thick at the bottom.

22 Improved Ion Bond Recoating for the Gear Manufacturing Industry (January/February 1997)

This article summarizes the development of an improved titanium nitride (TiN) recoating process, which has, when compared to conventional recoat methods, demonstrated tool life increases of up to three times in performance testing of hobs and shaper cutters. This new coating process, called Super TiN, surpasses the performance of standard TiN recoating for machining gear components. Super TiN incorporates stripping, surface preparation, smooth coating techniques and polishing before and after recoating. The combination of these improvements to the recoating process is the key to its performance.

23 High Technology Hobs (January/February 1993)

Today's high technology hobs are visible different from their predecessors. Gear hobs have taken on a different appearance and function with present day technology and tool and material development. This article shows the newer products being offered today and the reasons for investigating their potential for use in today's modern gear hobbers, where cost reduction and higher productivity are wanted.

24 Our Experts Discuss... (March/April 1991)

Question: I have just become involved with the inspection of gears in a production operation and wonder why the procedure specifies that four involute checks must be made on each side of the tooth of the gear being produced, where one tooth is checked and charted in each quadrant of the gear. Why is this done? These particular gears are checked in the pre-shaved, finish-shaved, and the after-heat-treat condition, so a lot of profile checking must be done.

25 Cutting Tools Now (May/June 1996)

The cutting tool is basic to gear manufacturing. Whether it's a hob, broach, shaper cutter or EDM wire, not much gets done without it. And the mission of the tool remains the same as always; removing material as quickly, accurately and cost-effectively as possible. Progress in the field tends to be evolutionary, coming gradually over time, but recently, a confluence of emerging technologies and new customer demands has caused significant changes in the machines, the materials and the coatings that make cutting tools.

26 Design Implications for Shaper Cutters (July/August 1996)

A gear shaper cutter is actually a gear with relieved cutting edges and increased addendum for providing clearance in the root of the gear being cut. The maximum outside diameter of such a cutter is limited to the diameter at which the teeth become pointed. The minimum diameter occurs when the outside diameter of the cutter and the base circle are the same. Those theoretical extremes, coupled with the side clearance, which is normally 2 degrees for coarse pitch cutters an d1.5 degrees for cutters approximately 24-pitch and finer, will determine the theoretical face width of a cutter.

27 Hard Coatings on Contaminated Surfaces - A Case Study (January/February 1997)

Physical Vapor Deposited (PVD) coatings such as TiN (Titanium nitride) have been a boon for cutting tool manufacturers. They reduce wear and, therefore, extend tool life, which in turn reduces production costs. But PVD coatings are expensive, and when they fail, they cost both time and money, and they causes of the failure are not always readily apparent.

28 Industry News (November/December 2012)

The complete Industry News section from the November/December 2012 issue of Gear Technology.

29 High Speed Steel: Different Grades for Different Requirements (September/October 2004)

Hobs, broaches, shaper cutters, shaver cutters, milling cutters, and bevel cutters used in the manufacture of gears are commonly made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.

30 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

31 Cutting Low-Pich-Angle Bevel Gears; Worm Gears & The Oil Entry Gap (July/August 1992)

Question: Do machines exist that are capable of cutting bevel gear teeth on a gear of the following specifications: 14 teeth, 1" circular pitch, 14.5 degrees pressure angle, 4 degrees pitch cone angle, 27.5" cone distance, and an 2.5" face width?

32 Gleason's Genesis 130SV Gear Shaving Machine (May/June 2006)

The 130SV shaving machine from Gleason is the newest of the company's Genesis family of gear production equipment.

33 GT Extras (August 2014)

See the latest online video from Gleason, plus explore the THORS Academy Gears Knowledge Center and our Back to Basics archive.

34 Winds of Change (January/February 2008)

It seems that nothing can hold back the power of the wind—unless, of course, it's the availability of rugged, reliable, specially designed gearboxes. How Gleason is Keeping up with Demand.

35 Product News (January/February 2009)

The complete product news section from the January/February 2009 issue of Gear Technology, featuring giant-sized David Brown girth gears, gear inspection up to 4.5 meters and the latest Gleason gear grinder.

36 Alternative Gear Manufacturing (July/August 1998)

the gear industry is awash in manufacturing technologies that promise to eliminate waste by producing gears in near-net shape, cut production and labor costs and permit gear designers greater freedom in materials. These methods can be broken down into the following categories: alternative ways to cut, alternative ways to form and new, exotic alternatives. Some are new, some are old and some are simply amazing.

37 Dry Cutting of Bevel and Hypoid Gears (May/June 1998)

High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.

38 Large Gears, Better Inspection (July 2010)

Investment in Gleason GMM Series inspection equipment helps drive Milwaukee Gear's expansion into profitable new markets around the world—all hungry for high-precision custom gears and gear drives.

39 Grinding, Finishing and Software Upgrades Abound (March/April 2011)

Machine tool companies are expanding capabilities to better accommodate the changing face of manufacturing. Customers want smaller-sized equipment to take up less valuable floor space, multifunctional machines that can handle a variety of operations and easy set-up changes that offer simplified operation and maintenance.

40 Fundamentals of Bevel Gear Hard Cutting (November/December 1990)

Some years back, most spiral bevel gear sets were produced as cut, case hardened, and lapped. The case hardening process most frequently used was and is case carburizing. Many large gears were flame hardened, nitrided, or through hardened (hardness around 300 BHN) using medium carbon alloy steels, such as 4140, to avoid higher distortions related to the carburizing and hardening process.

41 Limitations of Worm and Worm Gear Surfaces in Order to Avoid Undercutting (November/December 1990)

The dimensions of the worm and worm gear tooth surfaces and some of the worm gear drive parameters must be limited in order to avoid gear undercutting and the appearance of the envelope of lines of contact on the worm surface. The author proposes a method for the solution of this problem. The relations between the developed concept and Wildhaber's concept of the limit contact normal are investigated. The results of computations are illustrated with computer graphics.

42 Industry News and AGMA Calendar (August/September 1984)

Herman Riccio, Chicago Gear Works President, to Retire; Gleason Opens MI Sales Office; American Pfauter hires Steve Peterson; plus AGMA's technical calendar for the Fall of 1984.

43 Real-World Job Training the Lean Way -- And Loving It (September 2011)

Make no mistake -- lean manufacturing is here to stay. And no wonder. As a fiercely competitive global economy continues to alter companies’ “Main Street” thinking, that relatively new dynamic is spurring the need for “I-need-it-yesterday” production output. And for increasingly more industries -- big or small -- that means getting as lean as you can, as fast as you can.

44 An Emphasis on Accuracy (June/July 2011)

Meeting the many challenges of large gear inspection.

45 Eco-Friendly Cutting Fluids (May/June 1995)

Okay, so you want to make some high quality gears for your customers, and you want to make a profit for your company, but you don't want to make a mess of the environment. What can you do?

46 CNC Bevel Gear Generators and Flared Cup Gear Grinding (July/August 1993)

New freedom of motion available with CNC generators make possible improving tooth contact on bevel and hypoid gears. Mechanical machines by their nature are inflexible and require a special mechanism for every desired motion. These mechanisms are generally exotic and expensive. As a result, it was not until the introduction of CNC generators that engineers started exploring motion possibilities and their effect on tooth contact.

47 Environmentally Safe Fluids for Industrial Cutting, Lubrication, & Cleaning (January/February 1993)

Not long ago, many manufacturing managers thought sensitivity to environmental protection standards meant additional expenses, decreased productivity, and a plethora of headaches and hassles.

48 The Changing Industrial Landscape (March/April 2009)

Companies weigh in on green technology and sustainable efforts.

49 Practical Magic - Metrology Products Keep Pace with Machine Technology (July 2009)

Gear metrology is a revolving door of software packages and system upgrades. It has to be in order to keep up with the productivity and development processes of the machines on the manufacturing floor. Temperature compensation, faster inspection times and improved software packages are just a few of the advancements currently in play as companies prepare for new opportunities in areas like alternative energy, automotive and aerospace/defense.

50 Basic Honing & Advanced Free-Form Honing (July/August 1997)

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

51 The Broaching of Gears (March/April 1997)

Broaching is a process in which a cutting tool passes over or through a part piece to produce a desired form. A broach removes part material with a series of teeth, each one removing a specified amount of stock.

52 Chamfering and Deburring External Parallel Axis Gears (November/December 1996)

The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.

53 EMO 2013 - Intelligence in Production (August 2013)

Preview of some of the exhibits relevant to gear manufacturing at the upcoming EMO 2013.

54 Industry News (September 2013)

The complete Industry News section from the September 2013 issue of Gear Technology.

55 Product News (July 2014)

The complete Product News section from the July 2014 issue of Gear Technology.

56 Moving Parts (May 2014)

Machine tools boost speed and throughput with automation technology.

57 Industry News (November/December 2013)

The complete Industry News section from the November/December 2013 issue of Gear Technology.

58 New Gear Developments at IMTS (November/December 1996)

The International Manufacturing Technology Show provided one of the biggest ever marketplaces for buying and selling gear-making equipment, with 121601 attenders, making it the largest IMTS ever. The show took place September 4-11 at McCormick Place in Chicago, IL.

59 A Basic Guide to Deburring and Chamfering Gears (July/August 1995)

In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.

60 All-in-One Broaching Capability (January/February 2010)

Faster, more efficient manufacturing offered with table-top design from American Broach & Machine.

61 Industry News (July 2009)

The complete industry news section from the July 2009 issue of Gear Technology.

62 Winds of Change in Profile Grinding (May/June 2004)

Recent breakthroughs in profile grinding software are helping Anderson Precision Gears and others meet wind power’s insatiable appetite for faster production of large, high-quality gears.

63 State-of-the-Art Broaching (August 2011)

There are a number of companies working to change the way broaching is perceived, and over the past 10 years, they’ve incorporated significant technological changes to make the process more flexible, productive and accurate.

64 EMO Hannover - More than Machine Tools (October 2011)

Some gear-related highlights from the recent EMO show in Hannover, Germany.

65 What to Look For Before You Leap (March/April 1995)

Question: We are interested in purchasing our first gear hobbing machine. What questions should we ask the manufacturer, and what do we need to know in order to correctly specify the CNC hardware and software system requirements?

66 Computers and Automation Lead IMTS Innovations (November/December 1994)

Robots, computers and other signs of high technology abounded at IMTS 94, supporting the claim by many that this was one of the best shows ever. Many of the machines on display had so many robotic attachments and computer gizmos that they looked more like they belonged in some science fiction movie than on the floor of a machine shop.

67 The Geometric Design of Internal Gear Pairs (May/June 1990)

The paper describes a procedure for the design of internal gear pairs, which is a generalized form of the long and short addendum system. The procedure includes checks for interference, tip interference, undercutting, tip interference during cutting, and rubbing during cutting.

68 Cutting Fluid Selection and Process Controls for the Gear Manufacturing Industry (July/August 1987)

The last decade has been a period of far-reaching change for the metal working industry. The effect of higher lubricant costs, technical advances in machine design and increasing competition are making it essential that manufacturers of gears pay more attention to testing, selecting and controlling cutting fluid systems. Lubricant costs are not a large percentage of the process cost relative to items such as raw materials, equipment and labor, and this small relative cost has tended to reduce the economic incentive to evaluate and to change cutting fluids.

69 Industry News (January/February 2014)

The complete Industry News section from the January/February 2014 issue of Gear Technology.

70 Power Skiving of Cylindrical Gears on Different Machine Platforms (January/February 2014)

It has long been known that the skiving process for machining internal gears is multiple times faster than shaping, and more flexible than broaching, due to skiving's continuous chip removal capability. However, skiving has always presented a challenge to machines and tools. With the relatively low dynamic stiffness in the gear trains of mechanical machines, as well as the fast wear of uncoated cutters, skiving of cylindrical gears never achieved acceptance in shaping or hobbing, until recently.

71 Product News (November/December 2013)

The complete Product News section from the November/December 2013 issue of Gear Technology.

72 No Compromising on Quality at Allison Transmission (July 2014)

Gleason 350GMS helps put higher quality, more reliable gears into its next-generation TC10 automatic transmission.

73 Industry News (July 2014)

The complete Industry News section from the July 2014 issue of Gear Technology.

74 Differential Gears (October 2012)

What are the manufacturing methods used to make bevel gears used in automotive differentials?

75 IMTS 2014 Product Preview (August 2014)

An in-depth look at the major booths with the latest technology used in gear manufacturing.

76 Industry News (October 2013)

The complete Industry News section from the October 2013 issue of Gear Technology.

77 The Art of Versatility - Grinding at Gear Expo and EMO (October 2013)

Whether you spent time at Gear Expo in Indianapolis or EMO in Hannover, there was certainly new technology attracting attention. Machine tools are faster, more efficient and can integrate numerous functions in a single setup. Grinding technology is turning science upside down and inside out with high-speed removal rates and increased throughput.

78 Industry News (May 2013)

The complete Industry News section from the May 2013 issue of Gear Technology

79 If You Rebuild It, They Will Buy It (May 2013)

It’s been said that the best ideas are often someone else's. But with rebuilt, retrofitted, re-controlled or remanufactured machine tools, buyer beware and hold onto your wallet. Sourcing re-work vendors and their services can require just as much homework, if not necessarily dollars, as with just-off-the-showroom-floor machines.

80 Gleason Machine Setup (November/December 2012)

A reader asks about the proper setup procedures for cutting a ring and pinion set on a Gleason 116.

81 Product News (June/July 2013)

The complete Product News section from the June/July 2013 issue of Gear Technology.

82 Leading the Way in Lead Crown Correction and Inspection (August 2013)

Forest City Gear applies advanced gear shaping and inspection technologies to help solve difficult lead crown correction challenges half a world away. But these solutions can also benefit customers much closer to home, the company says. Here's how…

83 Gear Expo 2013 - An Oscar-Worthy Indy Production (August 2013)

We are well into an odd-number year, so it must be just about time for another Gear Expo. Indeed, the big show -- Gear Expo 2013 -- kicks off in Indianapolis at 9:00 a.m. Tuesday, September 17, wrapping up Thursday the 19th at 4:00 p.m. And whether you are exhibiting or attending, the bottom line is you are going -- a good thing for you, your company and the tightly knit U.S. gear industry.

84 Wanted, Custom-Made Machine Tools (August 2013)

The machine tool industry is as competitive as ever. New machine technologies, materials, coatings and software upgrades are changing the way gears are being manufactured. Companies like Gleason, Liebherr, Kapp/Niles and DMG/Mori Seiki spend plenty of time and resources on R&D to develop the best products for the gear market. More importantly, these companies engage with (and listen to) customer requests.

85 Gear Grinding Gets Integrated at IMTS 2012 (October 2012)

The latest machines, tooling and technology for gear grinding were featured at IMTS 2012.

86 Remedies for Cutting Edge Failure of Carbide Hob due to Chip Crush (November/December 2004)

Some results of evaluation by this method in the automotive industry.

87 Liebherr's LDF350 Offers Complete Machining in New Dimension (November/December 2011)

The objective, according to Dr.- Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.

88 Reliable and Efficient Skiving (September 2011)

Klingelnberg's new tool and machine concept allow for precise production.

89 Synthesis of Spiral Bevel Gears (March/April 1991)

There are different types of spiral bevel gears, based on the methods of generation of gear-tooth surfaces. A few notable ones are the Gleason's gearing, the Klingelnberg's Palloid System, and the Klingelnberg's and Oerlikon's Cyclo Palliod System. The design of each type of spiral bevel gear depends on the method of generation used. It is based on specified and detailed directions which have been worked out by the mentioned companies. However, there are some general aspects, such as the concepts of pitch cones, generating gear, and conditions of force transmissions that are common for all types of spiral bevel gears.

90 Tomorrow's Gear Inspection Systems: Arriving Just in Time (June/July 2012)

Gleason's GMS analytical gear inspection systems provide all the right features at Eaton Corp.

91 Bevel Gear Development and Testing Procedure (July/August 1986)

The most conclusive test of bevel and hypoid gears is their operation under normal running conditions in their final mountings. Testing not only maintains quality and uniformity during manufacture, but also determines if the gears will be satisfactory for their intended applications.

92 Product News (May 2013)

The complete Product News section from the May 2013 issue of Gear Technology.

93 Hard Cutting - A Competitive Process in High Quality Gear Production (May/June 1987)

The higher load carrying capacities, compact dimensions and longer life of hardened gears is an accepted fact in industry today. However, the costs involved in case hardening and subsequent finishing operations to achieve these advantages are considerable. For example, in order to achieve desired running properties on larger gears, it has been necessary to grind the tooth flanks. This costly operation can now be replaced, in many cases, by a new Hard Cutting (HC) process which permits the cutting of hardened gears while maintaining extremely low tooling costs.

94 The Road Leads Straight to Hypoflex (March/April 2010)

A new method for cutting straight bevel gears.

95 Environmentally Friendly Cutting Fluids (March/April 2005)

Environmentally friendly cutting fluids aren't just good for the environment. They can also be good for performance.

96 The First Lady of Gearing (September/October 1997)

In 1877, Irish immigrant William Gleason, owner of a machine tool business in Rochester, NY, suffered a terrible blow. Gleason's son Tom died. The loss was not merely a personal one. Tom had been his father's assistant, and the senior Gleason had no one to fill the gap and help him carry on his business.

97 Gleason Corporation Acquires The Pfauter Group (September/October 1997)

Gleason Corporation has announced that agreement has been reached on all terms to acquire for approximately $36 million in cash the Hermann Pfauter Group, including, among other operations, Hermann Pfauter GmbH & Co., a privately held leading producer of gear equipment based in Ludwigsburg, Germany; its 76% interest in Pfauter-Maad Cutting Tools, a leading cutting tool manufacturer basked in Loves Park, IL; and Pfauter-Maag management's 24% ownership interest in that company. The acquisition includes all assets and liabilities, including the assumption of approximately $56 million in bank debt.

98 New Technology for Stronger Plastic Gears (August 2012)

Gleason-K2 Plastics eliminates weld lines with no machining.

99 Gleason Cutter Head Improves Tool Life and Productivity (November/December 2009)

The Pentac Plus is the latest generation of Gleason’s Pentac bevel gear cutting system. It is designed to allow much higher tool life and improved productivity, especially for cutters using multiple face blade geometry.

100 Gleason Acquires Assets of Hurth (September/October 1995)

Rochester, NY - Gleason Corporation has acquired the assets of Hurth Maschinen and Werkzeuge GmbH, the designer and builder of cylindrical (parallel-axis) gear-making machinery and tooling based in Munich, Germany. The addition of Hurth gear shaving machines and tooling and gear honing machines will further broaden Gleason's expanding product line for manufacturers of cylindrical gears.

101 American Wera Profilator Introduces Scudding Process (January/February 2008)

Rolled out at EMO 2007, the Scudding process is a continuous cutting operation that uses a tool design similar to a helical shaper cutter. It can be used for a wide range of gear applications...

102 Jim Gleason of The Gleason Works (January/February 1995)

What follows is the first of a series of interviews Gear Technology is conducting with leaders in the gear industry. We will be asking them for their insights on where the industry is, where it's been and where they see it going in the future. Our first interview is with Jim Gleason, president and chairman of Gleason Corporation, Rochester, NY.

103 ...And from the Industry (October/November 1984)

Industry News from October/November 1984 Gear Technology.

News Items About Gleason Cutting Tools

1 Ipsen Ships TurboTreaters to Gleason Cutting Tools (July 20, 2012)
Ipsen has shipped two 6 bar TurboTreaters to Gleason Cutting Tools Corporation located in Loves Park, Illinois. The units are designed fo... Read News

2 Gleason Cutting Tools Recognized as John Deere Partner-Level Supplier (March 21, 2013)
Gleason Corporation recently announced that its Gleason Cutting Tools Corporation facility in Rockford, Illinois has earned Partner-level... Read News

3 Gleason Cutting Tools Recognized as John Deere Partner-Level Supplier (March 28, 2014)
Gleason Corporation announced that its Gleason Cutting Tools Corporation facility in Rockford, Illinois has for the second year in a row earned Partner-level status... Read News