Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

ISO standards - Search Results

Related Companies

DTR Corp. (formerly Dragon Precision Tools)
DTR offers a complete line of coarse pitch to fine pitch hobs including involute, worm, chain sprocket, timing pulley, serration, parallel spline or special tooth shape, shaper cutters and milling cutters for auto, aerospace, wind, mining, construction and other industrial gear cutting applications.

R.E. Smith & Co.
Over 60 years experience in the gear industry. Over 20 years consulting experience in all types of industries. Over 140 different clients with applications from tiny camera gears to large hydro-electric plant drive gears. We have published numerous articles and technical papers in the area of gear metrology, noise, and transmission error (single flank composite) testing.

Articles About ISO standards

1 Standard Issues (November/December 1996)

Standards are unlike gears themselves: mundane, but complex, ubiquitous and absolutely vital. Standards are a lingua franca, providing a common language with reference points for evaluating product reliability and performance for manufacturers and users. The standards development process provides a scientific forum for discussion of product design, materials and applications, which can lead to product improvement. Standards can also be a powerful marketing tool for either penetrating new markets or protecting established ones.

2 Globalization Brings AGMA, ISO Standards Closer (May/June 2004)

“The gear marketplace is a global marketplace.” Bill Bradley says it easily, with no special emphasis. The vice president of AGMA’s technical division sees the statement as an obvious fact.

3 New ANSI-AGMA Accuracy Standards for Gears (March/April 2004)

AGMA has started to replace its 2000-A88 standard for gear accuracy with a new series of documents based largely on ISO standards. The first of the replacement AGMA standards have been published with the remainder coming in about a year. After serving as a default accuracy specification for U.S. commerce in gear products for several decades, the material in AGMA 2000-A88 is now considered outdated and in need of comprehensive revision.

4 Computerized Hob Inspection & Applications of Inspection Results Part II (July/August 1994)

Flute Index Flute index or spacing is defined as the variation from the desired angle between adjacent or nonadjacent tooth faces measured in a plane of rotation. AGMA defines and provides tolerance for adjacent and nonadjacent flute spacing errors. In addition, DIN and ISO standards provide tolerances for individual flute variation (Fig. 1).

5 A Comparison of ISO 4156-ANSI B92.2M - 1980 With Older Imperial Standards (September/October 1994)

The purpose of this article is to discuss ISO 4156/ANSI B92.2M-1980 and to compare it with other, older standards still in use. In our experience designing and manufacturing spline gauges and other spline measuring or holding devices for splined component manufacturers throughout the world, we are constantly surprised that so many standards have been produced covering what is quite a small subject. Many of the standards are international standards; others are company standards, which are usually based on international standards. Almost all have similarities; that is, they all deal with splines that have involute flanks of 30 degrees, 37.5 degrees or 45 degrees pressure angle and are for the most part flank-fitting or occasionally major-diameter-fitting.

6 The Frugal Certification Process (July/August 1994)

Much about ISO 9000 is the subject of noisy debate. But on one thing almost everyone, true believers and critics alike, agrees: Getting ISO 9000 certification can be expensive. Companies can expect to spend at least $35,000 for basic certification and six-month checkup fees over a three-year period. These figures do not include hidden costs like time and money spent on internal improvements required to meet ISO 9000 certification. But the really big-ticket items in the process are employee time and the cost of bringing in outside consultants. Many ISO 9000 consultants charge upwards of $1,800 a day.

7 What is ISO 9000 and Why Should I Care (March/April 1994)

What follows is the first of three articles we will be running on ISO 9000 and what it means for the gear industry. This first article will cover what ISO 9000 is, what some of its benefits - and problems - are, and whether your company should be a candidate for this certification process. In our next issue, we will consider the important question of how, when, and if to hire an ISO 9000 consultant. The final article in this series will discuss ways to save money while streamlining the certification process in your company.

8 AGMA and ISO Accuracy Standards (May/June 1998)

The American Gear Manufacturers Association (AGMA) is accredited by the American National Standards Institute (ANSI) to write all U.S. standards on gearing. However, in response to the growing interest in a global marketplace, AGMA became involved with the International Standards Organization (ISO) several years ago, first as an observer in the late 1970s and then as a participant, starting in the early 1980s. In 1993, AGMA became Secretariat (or administrator) for Technical Committee 60 of ISO, which administers ISO gear standards development.

9 Gear Metrology Standards and ISO 9000 (May/June 1994)

I noted with interest the beginning of Gear Technology's three-part series on ISO 9000 certification. I also recently attended Brown & Sharpe's/Leitz gear metrology seminar. Both events caused me to smile and reflect.

10 Calculating Spur and Helical Gear Capacity with ISO 6336 (November/December 1998)

This is the third article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are htose of the author as an individual. They do not represent the opinions of any organization of which he is a member.

11 Gear Standards and ISO GPS (October 2013)

In today’s globalized manufacturing, all industrial products having dimensional constraints must undergo conformity specifications assessments on a regular basis. Consequently, (standardization) associated with GD&T (geometrical dimensioning and tolerancing) should be un-ambiguous and based on common, accepted rules. Of course gears - and their mechanical assemblies - are special items, widely present in industrial applications where energy conversion and power transmission are involved.

12 ISO 9000: Global Market Salvation Or A Pig In A Poke (March/April 1994)

ISO 9000 is the latest hot topic in marketing and manufacturing circles. Everyone seems to be talking about it, but few seem to understand it completely. depending on whom one talks to, it's either the greatest thing to hit industry since the assembly line, another cash cow for slick consultants, a conspiracy on the part of Europeans to dominate global markets, or the next necessary step to compete in the global economy of the twenty-first century. It may be all of the above.

13 Comparing Standards (September/October 1998)

One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.

14 Introduction to ISO 6336 What Gear Manufacturers Need to Know (July/August 1998)

ISO 6336 Calculation of Load Capacity of Spur and Helical Gears was published in 1997 after 50 years of effort by an international committee of experts whose work spanned three generations of gear technology development. It was a difficult compromise between the existing national standards to get a single standard published which will be the basis for future work. Many of the compromises added complication to the 1987 edition of DIN 3990, which was the basic document.

15 Choosing An ISO 9000 Consultant: Why, When & How (May/June 1994)

On of the key questions confronting any company considering ISO 9000 certification is, how much is this going to cost? The up-front fees are only the beginning. Dissect the ISO 9000 certification procedure with an eye for hidden costs, and two segments of the process will leap out - the cost of consultants and the cost of making in-house improvements for the sake of passing certification. Most of these costs can be controlled by careful selection f the right consultant in the first place.

16 Review of Gear Standards - Part II (January/February 1991)

In Part I differences in pitting ratings between AGMA 218, the draft ISO standard 6336, and BS 436:1986 were examined. In this part bending strength ratings are compared. All the standards base the bending strength on the Lewis equation; the ratings differ in the use and number of modification factors. A comprehensive design survey is carried out to examine practical differences between the rating methods presented in the standards, and the results are shown in graphical form.

17 AGMA, ISO, and BS Gear Standards Part I - Pitting Resistance Ratings (November/December 1990)

A study of AGMA 218, the draft ISO standard 6336, and BS 436: 1986 methods for rating gear tooth strength and surface durability for metallic spur and helical gears is presented. A comparison of the standards mainly focuses on fundamental formulae and influence factors, such as the load distribution factor, geometry factor, and others. No attempt is made to qualify or judge the standards other than to comment on the facilities or lack of them in each standard reviewed. In Part I a comparison of pitting resistance ratings is made, and in the subsequent issue, Part II will deal with bending stress ratings and comparisons of designs.

18 Comparison of Rating Trends in AGMA Versus ISO (May/June 2004)

As the international business community grows closer together, the need for understanding differences between national and international gear rating standards becomes increasingly important for U.S. gear manufacturers competing in the world market.

19 AGMA Responds to Gear Standards Article (January/February 1991)

The authors of last issue's article comparing AGMA, ISO and BS methods for Pitting Resistance Ratings are commended. Trying to compare various methods of rating gears is like hitting a moving target in a thick forest. The use of different symbols, presentations, terminology, and definitions in these standards makes it very difficult. But the greatest problem lies with the authors' use of older versions of these documents. ISO drafts and AGMA standards have evolved at the same time their work was accomplished and edited.

20 Single Flank Measuring; Estimating Horsepower Capacity (September/October 1991)

Question: What is functional measurement and what is the best method for getting truthful answers?

21 Application and Improvement of Face Load Factor Determination Based on AGMA 927 (May 2014)

The face load factor is one of the most important items for a gear strength calculation. Current standards propose formulae for face load factor, but they are not always appropriate. AGMA 927 proposes a simpler and quicker algorithm that doesn't require a contact analysis calculation. This paper explains how this algorithm can be applied for gear rating procedures.

22 Towards an Improved AGMA Accuracy Classification System on Double-Flank Composite Measurements (June/July 2012)

AGMA introduced ANSI/AGMA 2015–2–A06— Accuracy Classification System: Radial System for Cylindrical Gears, in 2006 as the first major rewrite of the double-flank accuracy standard in over 18 years. This document explains concerns related to the use of ANSI/AGMA 2015–2–A06 as an accuracy classification system and recommends a revised system that can be of more service to the gearing industry.

23 Developing Flexible Couplings Standards (May 2011)

AGMA Flexible Couplings committee chairman Glenn C. Pokrandt gives an update about standards and other documents under development.

24 Writing the Standards (January/February 2011)

Gary A. Bish, director of product design technology for Horsburgh & Scott, discusses his role as chairman of the AGMA mill gearing committee.

25 Planet Carrier Design (January/February 2014)

With all the advantages of building float into a planetary gear system, what advantages are there to using a carrier in the first place, rather than simply having your planets float in the system?

26 Wind Standard Closer to Completion (March/April 2011)

Faithful Gear Technology readers may recall that our July 2009 issue contained an update of the deliberations provided by Bill Bradley. Now, almost two years later, there is an ISO/IEC wind turbine gearbox standard out for draft international standard ballot (ballot closes 2011-05-17).

27 Standards Development: Enclosed Drives (March/April 2011)

Chairman Todd Praneis of Cotta Transmission describes the activities of AGMA's Enclosed Drives technical committee.

28 The Devil Is in the Details (October 2013)

A response to the September 2013 Voices piece on how gear standards are written, from one who's been there.

29 The SERCOS Interface Standard (January/February 1996)

Today motion control systems are migrating from analog to digital technology at an ever increasing rate because digital technology at an ever-increasing rate because digital drives provide performance equal to or exceeding that of analog drives, plus information to run your machine more effectively and manage your quality program and your business. Most of this data is simply not available from analog drives.

30 AGMA & MPIF Develop Standards, Information Sheet for Powder Metal Gears (September/October 1996)

AGMA and members of the Metal Powder Industries Federation (MPIF) are three years into a joint project to develop specifications and an information sheet on rating powder metal gears. According to committee vice chairman Glen A. Moore of Burgess-Norton Mfg. Co., the first phase of the project, the publication of AGMA Standard "6009-AXX, Specifications for Powder Metallurgy Gears," should be completed in late 1996 or early 1997.

31 Raising the Standards (August 2010)

Dr. Phil Terry, chairman of the AGMA Technical Division Executive Committee, talks about the standards-making process.

32 The Gear Standards Challenge (September/October 1997)

Who wants or needs technical details about gearing? Who cares about it? Three out of every four people who are reading this magazine make up at least 75% of those who have an interest in the subject. The members of AGMA, EUROTRANS, JGMA and JSIM have an interest. All the people attending the Gear Expo in Detroit have an interest. Clearly, however, the people with the most pressing interest in our industry are our customers, the end users of gear products. The unfortunate reality, though, is that in many cases, these customers don't even know that's what they want.

33 New Guidelines For Wind Turbine Gearboxes (May/June 1998)

The wind turbine industry has been plagued with gearbox failures, which cause repair costs, legal expenses, lost energy production and environmental pollution.

34 New Standards for Large Ring Gears for Mills, Kilns (September 2013)

Methods of examining large ring gear teeth to detect surface breaking discontinuities have often been time-consuming and limited in terms of data collected. Methods such as visual and magnetic particle inspection can miss critical discontinuities. However, a new ASTM international standard provides a more effective method for gear examination using eddy current array, a technology that has been widely used but, until now, not standardized.

35 How Gear Standards are Written (September 2013)

The new chairman of the AGMA Technical Division Executive Committee explains what's involved in the process of developing technical standards at the AGMA.

36 QS - 9000 Rules (November/December 1995)

Ready or not, QS-9000 is here. If you are a first-tier supplier to one of the Big Three automotive companies, you've already heard that compliance with this new quality standard is now an entry-level requirement for doing business with Ford, General Motors and Chrysler. If you're a second-or third-tier supplier, you can expect the ripple effect of this new standard to hit your company one way or another.

37 Light-Weight Design for Planetary Gear Transmissions (September 2013)

There is a great need for future powertrains in automotive and industrial applications to improve upon their efficiency and power density while reducing their dynamic vibration and noise initiation. It is accepted that planetary gear transmissions have several advantages in comparison to conventional transmissions, such as a high power density due to the power division using several planet gears. This paper presents planetary gear transmissions, optimized in terms of efficiency, weight and volume.

38 Implementing ISO 18653-Gears: Evaluation of Instruments for Measurement of Individual Gears (May 2010)

A trial test of the calibration procedures outlined in ISO 18653—Gears: Evaluation of Instruments for the Measurement of Individual Gears, shows that the results are reasonable, but a minor change to the uncertainty formula is recommended. Gear measuring machine calibration methods are reviewed. The benefits of using workpiece-like artifacts are discussed, and a procedure for implementing the standard in the workplace is presented. Problems with applying the standard to large gear measuring machines are considered and some recommendations offered.

39 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part I (March/April 1987)

The load capacity rating of gears had its beginning in the 18th century at Leiden University when Prof. Pieter van Musschenbroek systematically tested the wooden teeth of windmill gears, applying the bending strength formula published by Galilei one century earlier. In the next centuries several scientists improved or extended the formula, and recently a Draft International Standard could be presented.

40 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part 2 (May/June 1987)

In ParI 1 several scuffing (scoring) criteria were shown ultimately to converge into one criterion, the original flash temperature criterion according to Blok. In Part 2 it will be shown that all geometric influences may be concentrated in one factor dependent on only four independent parameters, of which the gear ratio, the number of teeth of the pinion, and the addendum modification coefficient of the pinion are significant.

41 The Changing Industrial Landscape (March/April 2009)

Companies weigh in on green technology and sustainable efforts.

42 The Effect of Superfinishing on Gear Micropitting (March/April 2009)

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

43 How's Your Lead Time (July 2007)

The gear companies enjoying the most success in today’s global market are those that firmly believe quality is much more than expert craftsmanship and foolproof inspection methodologies.

44 Greener Gears (July/August 2004)

Companies around the world are learning to embrace the environment, and the gear industry is no exception. This special section takes a look at how some gear manufacturers are doing their part to conserve resources, preserve and protect the environment, and give back to the land. What we’ve found is that adopting environmental measures is far more than just good corporate citizenship. For many gear industry companies, good environmental practices also turn out to be good for the bottom line.

45 Repair via Isotropic Superfinishing of Aircraft Transmission Gears (May 2009)

The objective of this paper is to demonstrate that transmission gears of rotary-wing aircraft, which are typically scrapped due to minor foreign object damage (FOD) and grey staining, can be repaired and re-used with signifi cant cost avoidance. The isotropic superfinishing (ISF) process is used to repair the gear by removing surface damage. It has been demonstrated in this project that this surface damage can be removed while maintaining OEM specifications on gear size, geometry and metallurgy. Further, scrap CH-46 mix box spur pinions, repaired by the ISF process, were subjected to gear tooth strength and durability testing, and their performance compared with or exceeded that of new spur pinions procured from an approved Navy vendor. This clearly demonstrates the feasibility of the repair and re-use of precision transmission gears.

46 AGMA Exec Speaks Out on ISO 9000 (July/August 1994)

With all the heated debate and hoopla surrounding ISO 9000 certification, everyone seems to have an opinion about whether to sign up. Executives in the gear industry are flooded with information and ideas that often seem at odds. Gear Technology asked AGMA executive director Joe T. Franklin, Jr. to give an industry perspective on the pros and cons of ISO 9000 certification.

47 Viewpoint - Our Readers Respond (September/October 1994)

I support Clem Miller (Viewpoint May/June) in his skepticism of ISO 9000. The metrology of gears is important, but in the present state of the art, manufacture is more accurate than design.

48 Application of the First International Calculation Method for Micropitting (May 2012)

The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published last December. It is the first and only official, international calculation method established for dealing with micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.

49 Plastic Gear Standards: A Balancing Act (March/April 2007)

Creating standards for plastic gears calls for a deft touch. The challenge is to set uniform guidelines, yet avoid limiting the creative solutions plastic offers gear designers.

50 Future Demands Next Generation of Standards and Practices in Gear Industry (May 2010)

Gear manufacturers are moving into an era that will see changes in both engineering practices and industry standards as new end-products evolve. Within the traditional automotive industry, carbon emission reduction legislation will drive the need for higher levels of efficiency and growth in electric and hybrid vehicles. Meanwhile, the fast growing market of wind turbines is already opening up a whole new area of potential for gearbox manufacturers, but this industry is one that will demand reliability, high levels of engineering excellence and precision manufacturing.

51 An International Wind Turbine Gearbox Standard (July 2009)

Industrial gear standards have been used to support reliability through the specification of requirements for design, manufacturing and verification. The consensus development of an international wind turbine gearbox standard is an example where gear products can be used in reliable mechanical systems today. This has been achieved through progressive changes in gear technology, gear design methods and the continual development and refinement of gearbox standards.

52 Industry Forum (September/October 1985)

Your May/June issue contains a letter from Edward Ubert of Rockwell International with some serious questions about specifying and measuring tooth thickness.

53 Case Study Involving Surface Durability and Improved Surface Finish (August 2012)

Gear tooth wear and micropitting are very difficult phenomena to predict analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.

54 No Compromising on Quality at Allison Transmission (July 2014)

Gleason 350GMS helps put higher quality, more reliable gears into its next-generation TC10 automatic transmission.

55 Allowable Contact Stresses in Jacking Gear Units Used in the Offshore Industry (May 2010)

An offshore jack-up drilling rig is a barge upon which a drilling platform is placed. The barge has legs that can be lowered to the sea floor to support the rig. Then the barge can be “jacked up” out of the water, providing a stable work platform from which to drill for oil and gas. Jack-up drilling rigs were first introduced in the late 1950s. Rack-and- pinion-type jack-up units were introduced soon after that and have dominated the industry ever since.