Klueber Lubrication - Search Results

Articles About Klueber Lubrication


Articles are sorted by RELEVANCE. Sort by Date.

1 Industry News (March/April 2013)

The complete Industry News section from the March/April 2013 issue of Gear Technology.

2 Systematic Investigations on the Influence of Viscosity Index Improvers on EHL Film Thickness (November/December 2001)

Mineral-oil-base lubricants show a significant decrease of kinematic viscosity with rising temperature, as exemplified in Figure 1 by lubricants for vehicle gears. An important attribute of lubricants is their viscosity index (VI), according to DIN/ISO 2909 (Ref. 4). Viscosity index is a calculated coefficient, which characterizes the change of viscosity of lubricants as a function of temperature. A high viscosity index represents a low variation of viscosity due to temperature and vice versa. A low viscosity-temperature-dependence is required for lubricants that are operated at significantly varying temperature conditions, such as vehicle engine and gear lubricants in summer and winter time. This way, the oils remain flowing and pumpable at low temperatures on the one hand; and on the other hand, sufficiently thick lubricant films can be formed at higher temperatures for a safe separation of the surfaces.

3 Gear Oil Micropitting Evaluation (September/October 2000)

During the last decade, industrial gear manufacturers, particularly in Europe, began to require documentation of micropitting performance before approving a gear oil for use in their equipment. The development of micropitting resistant lubricants has been limited both by a lack of understanding of the mechanism by which certain lubricant chemistry promotes micropitting and by a lack of readily available testing for evaluation of the micropitting resistance of lubricants. This paper reports results of two types of testing: (1) the use of a roller disk machine to conduct small scale laboratory studies of the effects of individual additives and combinations of additives on micropitting and (2) a helical gear test used to study micropitting performance of formulated gear oils.

4 Vegetable-Based Oil as a Gear Lubricant (July/August 2003)

Universal tractor transmission oil (UTTO) is multifunctional tractor oil formulated for use in transmissions, final drives, differentials, wet brakes, and hydraulic systems of farm tractors employing a common oil reservoir. In the present work, the gear protection properties of two formulated vegetable-based UTTO oils, one synthetic ester-based UTTO oil, one synthetic ester gear oil, and one mineral based UTTO oil are investigated.

5 Morphology of Micropitting (November/December 2012)

Understanding the morphology of micropitting is critical in determining the root cause of failure. Examples of micropitting in gears and rolling-element bearings are presented to illustrate morphological variations that can occur in practice.

6 GT Extras (March/April 2013)

A sampling of newsletter articles and videos related to gear manufacturing from March/April 2013.

7 Myths and Miracles of Gear Coating (July/August 1999)

Three years ago, coated gears seemed to be the perfect solution for the Micro Marine Corporation. The early designs for the gear drive of their MicroCAT human-powered boat used a combination of thin-film dry gear coatings with lubrication and wear-resistance properties. These coatings simplified their design, provided corrosion resistance, made the gear drive environmentally safe and eliminated the need for gear drive lubrication and maintenance. It was a success story in the making.

8 Coated Gears Provide Slick Solution for Human-Powered Boat (January/February 1997)

Design Problem: Develop a gear drive for a pedal-powered water craft that will be easy to manufacture, use and maintain; that will be lightweight enough for the boat to be portable; and that will eliminate the environmental risk of lubricants leaking into the water.

9 Eco-Friendly Cutting Fluids (May/June 1995)

Okay, so you want to make some high quality gears for your customers, and you want to make a profit for your company, but you don't want to make a mess of the environment. What can you do?

10 EHL Film Thickness, Additives and Gear Surface Fatigue (May/June 1995)

Aircraft transmissions for helicopters, turboprops and geared turbofan aircraft require high reliability and provide several thousand hours of operation between overhauls. In addition, They should be lightweight and have very high efficiency to minimize operating costs for the aircraft.

11 Gear Wear Caused By Contaminated Oils (September/October 1996)

The diagnosis and prevention of gear tooth and bearing wear requires the discovery and understanding of the particular mechanism of wear, which in turn indicates the best method of prevention. Because a gearbox is a tribologically dependent mechanism, some understanding of gear and bearing tribology is essential for this process. Tribology is the general term for the study and practice of lubrication, friction and wear. If tribology is neglected or considered insignificant, poor reliability and short life will result.

12 Alternative Lubrication Methods for Large Open Gear Drives (September/October 1996)

The type of lubricant and the method of applying it to the tooth flanks of large open gears is very important from the point of view of lubrication technology and maintenance. When selecting the type of lubricant and the application method, it is important to check whether it is possible to feed the required lubricant quantity to the load-carrying tooth flanks, This is necessary to avoid deficient lubrication, damage to the gear and operational malfunctions. It is important to determine the type of lubricant, which may be fluid or grease-like. The consistency of the lubricant will have a direct impact on the ability of the lubrication system to feed adequately the lubricant to the gear. The interactions between the common types of lubricant and the lubrication application methods for open gear drives are shown in Fig. 1.

13 An Experimental Investigation of Aerospace-Quality Gears Operating in Loss-of-Lubrication Condition (August 2013)

This work establishes a baseline for aerospace spur gear behavior under oil-off conditions. The collected test results document a different oil-off time, dictated by material used.

14 Lubrication Specification and Methodology (September 2013)

A reader asks about how to specify a method of lubrication for a speed reducer with a three-stage helical gear with a low peripheral speed.

15 Elastohydrodynamic Lubrication (EHL): A Review (July 2015)

This review of elastohydrodynamic lubrication (EHL) was derived from many excellent sources (Refs. 1–5). The review of Blok’s flash temperature theory was derived from his publications (Refs. 6–9). An excellent general reference on all aspects of tribology is the Encyclopedia of Tribology (Ref. 10).

16 Test Facility Simulation Results for Aerospace Loss-of-Lubrication of Spur Gears (June 2015)

Prior to receiving airworthiness certification, extensive testing is required during the development of rotary wing aircraft drive systems. Many of these tests are conducted to demonstrate the drive system’s ability to operate at extreme conditions, i.e. — beyond that called for in the normal to maximum power operating range.

17 Thermal Behavior of a High-Speed Gear Unit (January/February 2016)

In this paper a thermal network model is developed to simulate the thermal behavior of a high-speed, one-stage gear unit which is jet-lubricated.

18 Influences on Failure Modes and Load-Carrying Capacity of Grease-Lubricated Gears (January/February 2016)

In order to properly select a grease for a particular application, a sound knowledge of the influence of different grease components and operating conditions on the lubrication supply mechanism and on different failure modes is of great benefit.

19 Transient EHL Analysis of Helical Gears (August 2016)

This paper addresses the lubrication of helical gears — especially those factors influencing lubricant film thickness and pressure. Contact between gear teeth is protected by the elastohydrodynamic lubrication (EHL) mechanism that occurs between nonconforming contact when pressure is high enough to cause large increases in lubricant viscosity due to the pressure-viscosity effect, and changes of component shape due to elastic deflection. Acting together, these effects lead to oil films that are stiff enough to separate the contacting surfaces and thus prevent significant metal-to-metal contact occurring in a well-designed gear pair.

20 On the Correlation of Specific Film Thickness and Gear Pitting Life (January/February 2015)

The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness defined as the ratio of lubricant film thickness to the composite surface roughness. It can be difficult to combine results of studies to create a cohesive and comprehensive data set. In this work gear surface fatigue lives for a wide range of specific film values were studied using tests done with common rigs, speeds, lubricant temperatures, and test procedures.

21 Lubrication Lexicon (September/October 2014)

I must confess I sometimes find myself a bit dazed when discussing lubrication issues with either staff or vendors. The terminology seems to be all over the lot, with some terms having double meanings. Can you help cut through the confusion?

22 Purchasing Gear Lubricants - Be Careful When Playing the Numbers Game (October 2013)

When it comes to purchasing gear lubricants, many people on both the sales and purchasing side decide to play the numbers game. The person with the most numbers, or the biggest numbers, or the lowest numbers, must have the best product - right? Wrong; gear oil selection is not a game, and numbers alone cannot determine the right product for an application.

23 Understanding Oil Analysis: How it Can Improve Reliability of Wind Turbine Gearboxes (November/December 2013)

Historically, wind turbine gearbox failures have plagued the industry. Yet an effective oil analysis program will increase the reliability and availability of your machinery, while minimizing maintenance costs associated with oil change-outs, labor, repairs and downtime. Practical action steps are presented here to improve reliability.

24 Additives: Anti-Wear vs Anti-Scuff (August 2014)

A reader asks: While I have read a reasonable amount of the literature on the pros and cons of anti-wear and anti-scuff additives, I find that the more I read, the more confused I become. I could use some clarity in my life.

25 Product News (September/October 2014)

The complete product news section from the September / October 2014 Issue Gear Technology.

26 Gear Oil Classification and Selection (May/June 1995)

Today gear drive operations have several options when selecting the proper lubricant for their gearboxes. As in the past, the primary lubricant used for gearbox lubrication is mineral oil. But with the advances in technology, synthetic hydrocarbons (PAOs) and polyglycols show very specific advantages in certain applications. With gear drives becoming more and more precise, it is now also to the benefit of the gear operator to verify that he or she has the proper additive package and viscosity in the lubricant selected. Fig. 1 shoes that a gear oil is a combination of a base oil and specific additives. The base oils can be either mineral oil, a synthetic or even in some cases a combination of the two.

27 Ten Myths About Gear Lubrication (May/June 1995)

Myth No. 1: Oil Is Oil. Using the wrong oil is a common cause of gear failure. Gears require lubricants blended specifically for the application. For example, slow-speed spur gears, high-speed helical gears, hypoid gears and worm gears all require different lubricants. Application parameters, such as operating speeds, transmitted loads, temperature extremes and contamination risks, must be considered when choosing an oil. Using the right oil can improve efficiency and extend gear life.

28 Micropitting of Big Gearboxes: Influence of Flank Modification and Surface Roughness (May 2011)

Most research on micropitting is done on small-sized gears. This article examines whether those results are also applicable to larger gears.

29 Worm Gears - Higher Energy Efficiency and Less Strain on Resources (May 2011)

A very direct and effective way of increasing power transmission efficiency is a changeover from mineral-oil-based lubricants to synthetic lubricants.

30 Flank Load Carrying Capacity and Power Loss Reduction by Minimized Lubrication (May 2011)

The objective of this study was to investigate the limits concerning possible reduction of lubricant quantity in gears that could be tolerated without detrimental effects on their load carrying capacity.

31 Wind Turbines: Clean Energy, but Energy Efficient (June/July 2011)

We talked energy efficiency with some major players in the lubricants industry— but with a focus on their products’ impact regarding energy efficiency of gears and gearboxes in wind turbines.

32 Getting a Grip on Big-Gear Lubrication (January/February 2012)

In the wide, wide world of moving parts, the gears required for the big jobs—the really big jobs—often experience big problems. Proper lubrication of these gears is paramount in industrial applications such as wind turbines, kilns, sugar mills, crushers, heavy construction, offshore drilling rigs, mining and quarrying.

33 The Lubrication of DLC Coated Gears with Environmentally Adapted Ester-Based Oil (July/August 2006)

A main limiting factor in extending the use of hard coatings to machine component application is the lack of knowledge about how these inert coatings perform under lubricated conditions using today's lubricants.

34 Design of Oil-Lubricated Machine Components for Life and Reliability (November/December 2007)

This article summarizes the use of laboratory fatigue data for bearings and gears coupled with probabilistic life prediction and EHD theories to predict the life and reliability of a commercial turboprop gearbox.

35 The Capacity of Superfinished Vehicle Components to Increase Fuel Economy, Part I (January/February 2009)

This paper will present data from both laboratory and field testing demonstrating that superfinished components exhibit lower friction, operating temperature, wear and/ or higher horsepower, all of which translate directly into increased fuel economy.

36 Understanding Fluid Flow to Improve Lubrication Efficiency (January/February 2004)

Excess lubricant supply in gearing contributes to power loss due to churning as well as the requirements of the lubrication system itself. Normally, a much larger amount of oil than required is used for cooling because so much of it is thrown away by centrifugal force. To lower the amount of lubricant required and reduce those losses, it is necessary to discover the ideal location of the supplying nozzle.

37 Calculation of Slow Speed Wear of Lubricated Gears (November/December 1985)

On gear drives running with pitch line velocities below 0.5 m/s so called slow speed wear is often observed. To solve some problems, extensive laboratory test work was started 10 years ago. A total of circ. 300,000 h running time on FZG back-to-back test rigs have been run in this speed range.

38 Service Behavior of PVD-Coated Gearing Lubricated with Biodegradable Synthetic Ester Oils (January/February 2004)

The following article is concerned with the analysis of the wear-reducing effect of PVD-coatings in gearings. Standardized test methods are used, which under near-real conditions enable statements to be made about the different forms of damage and wear (micropitting, macropitting, scuffing).

39 Scoring Load Capacity of Gears Lubricated with EP-Oils (October/November 1984)

The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.

40 Effect of MoS2 Films on Scoring Resistance of Gears (July/August 1986)

Gears are currently run at high speed and under high load. It is a significant problem to develop lubricants and gears with high load-carrying capacity against scoring. The particles of molybdenum disulfide have been considered to increase the scoring resistance of the gears. The wear characteristics and the scoring resistance of the gears lubricated with MoS2 paste and MoS2 powder have been investigated. (1) However, there are few investigations on the performance of the gears coated with MoS2 film with respect to scoring.

41 The Lubrication of Gears - Part 1 (March/April 1991)

This is a three-part article explaining the principles of gear lubrication. It reviews current knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Part 1 classifies gear tooth failures into five modes and explains the factors that a gear designer and operator must consider to avoid gear failures. It defines the nomenclature and gives a list of references for those interested in further research. It also contains an in-depth discussion of the gear tooth failure modes that are influenced by lubrication and gives methods for preventing gear tooth failures.

42 The Lubrication of Gears - Part II (May/June 1991)

What follows is Part 2 of a three-part article covering the principles of gear lubrication. Part 2 gives an equation for calculating the lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication regime. An equation for Blok's flash temperature, which is used for predicting the risk of scuffing, is also given.

43 The Lubrication of Gears - Part III (July/August 1991)

This is the final part of a three-part series on the basics of gear lubrication. It covers selection of lubricant types and viscosities, the application of lubricants, and a case history

44 Gear Material Quality: How To Judge It...Pitting: How To Prevent It (March/April 1993)

How do we know when the gear material we buy is metallurgically correct? How can we judge material quality when all gear material looks alike?

45 Influence of Lubrication on Pitting and Micropitting Resistance of Gears (March/April 1990)

Pitting and micropitting resistance of case-carburized gears depends on lubricants and lubrication conditions. Pitting is a form of fatigue damage. On this account a short time test was developed. The test procedure is described. The "pitting test" was developed as a short time test to examine the influence of lubricants on micropitting. Test results showing the influence of case-carburized gears on pitting and micropitting are presented.

46 Into-Mesh Lubrication of Spur Gears - Part 2 (July/August 1989)

In the lubrication and cooling of gear teeth a variety of oil jet lubrication schemes is sometimes used. A method commonly used is a low pressure, low velocity oil jet directed at the ingoing mesh of the gears, as was analyzed in Reference 1. Sometimes an oil jet is directed at the outgoing mesh at low pressures. It was shown in Reference 2 that the out-of-mesh lubrication method provides a minimal impingement depth and low cooling of the gears because of the short fling-off time and fling-off angle.(3) In References 4 and 5 it was shown that a radially directed oil jet near the out-of-mesh position with the right oil pressure was the method that provided the best impingement depth.

47 Lubricant Jet Flow Phenomena in Spur and Helical Gears (January/February 1987)

In the gearing industry, gears are lubricated and cooled by various methods. At low to moderate speeds and loads, gears may be partly submerged in the lubricant which provides lubrication and cooling by splash lubrication. With splash lubrication, power loss increases considerably with speed. This is partially because of churning losses. It is shown that gear scoring and surface pitting can occur when the gear teeth are not adequately lubricated and cooled.

48 Cutting Fluid Selection and Process Controls for the Gear Manufacturing Industry (July/August 1987)

The last decade has been a period of far-reaching change for the metal working industry. The effect of higher lubricant costs, technical advances in machine design and increasing competition are making it essential that manufacturers of gears pay more attention to testing, selecting and controlling cutting fluid systems. Lubricant costs are not a large percentage of the process cost relative to items such as raw materials, equipment and labor, and this small relative cost has tended to reduce the economic incentive to evaluate and to change cutting fluids.

49 Improved Worm Gear Performance with Colloidal Molybdenum Disulfide Containing Lubricants (November/December 1988)

Worm gear speed reducers give the design engineer considerable options, but these gear systems present a challenge to the lubrication engineer. Heat energy generated by the high rate of sliding and friction in the contact zone causes worm gears to be relatively inefficient compared to other gear types. Because worm gears operate under a boundary or near-boundary lubrication regime, a satisfactory lubricant should contain a friction modifier to alleviate these conditions.

50 Into-Mesh Lubrication of Spur Gears - Part I (May/June 1989)

Several methods of oil jet lubrication of gears are practiced by the gear industry. These include the oil jet directed into the mesh, out of the mesh and radially directed into the gear teeth. In most cases an exact analysis is not used to determine the optimum condition such as, jet nozzle location, direction and oil jet velocity, for best cooling. As a result many gear sets are operating without optimum oil jet lubrication and cooling.

51 Lubricants and Lubrication of Plastic Gears (September/October 1993)

Surface measurement of any metal gear tooth contact surface will indicate some degree of peaks and valleys. When gears are placed in mesh, irregular contact surfaces are brought together in the typical combination of rolling and sliding motion. The surface peaks, or asperities, of one tooth randomly contact the asperities of the mating tooth. Under the right conditions, the asperities form momentary welds that are broken off as the gear tooth action continues. Increased friction and higher temperatures, plus wear debris introduced into the system are the result of this action.