Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

Persian Gulf War - Search Results

Articles About Persian Gulf War


Articles are sorted by RELEVANCE. Sort by Date.

1 A United Europe Will Be A Long Time coming (May/June 1991)

Pride. Awe. Relief. Admiration. These were some of the emotions with which I, like most Americans, greeted the end of the Persian Gulf War. I was proud of our country for saying it would do a job and then doing it with a minimum of loss and a maximum of effectiveness; I was awed by the terrifying efficiency of our weapons and relieved that our casualties were so light; and I was filled with admiration at the skill with which one of the most complex logistical military operations of the century was carried out.

2 The Paperless Factory (January/February 1995)

You're already a veteran of the computer revolution. Only you and your controller know how much money you've spent and only your spouse knows how many sleepless nights you've had in the last ten years trying to carve out a place in the brave new world of computerized gear manufacturing. PC's, CNCs, CAD, CAM, DNC, SPC, CMM: You've got a whole bowl of alphabet soup out there on the shop floor. Overall these machines have lived up to their promises. Production time is down, quality is up. You have fewer scrapped parts and better, more efficient machine usage.

3 CNC Software Savvy (May/June 1995)

Question: When we purchase our first CNC gear hobbing machine, what questions should we ask about the software? What do we need to know to correctly specify the system requirements?

4 Gear Software You Didn't Know About (January/February 1997)

Designing and manufacturing gears requires the skills of a mathematician, the knowledge of an engineer and the experience of a precision machinist. For good measure, you might even include the are of a magician, because the formulas and calculations involved in gear manufacturing are so obscure and the processes so little known that only members of an elite cadre of professionals can perform them.

5 The ELIMS Project (January/February 1995)

Arrow Gear Company of Downers Grove, IL, has implemented a computer system that fully integrates exchange between all of its computer applications. The ELIMS (Electronic Linkage of Information Management Systems) project has increased manufacturing productivity and reduced lead times.

6 New Views A different way to spec and shop for parts (January/February 1996)

Information is the name of the game in the 90s. We need more of it; we need it faster; and we need it in infinitely manipulatable and user-friendly form. In many cases, getting it that way is still something of a Holy Grail, somewhere off on the distant horizon. But thanks to computer technology, bit by byte, we're getting there.

7 Information Control (January/February 1995)

It used to be that a shop with hustle and plenty of big, fast machines could thrive using a manual system. But no more. Today's economic environment requires more and more in the way of topnotch service and quick turnaround - which frequently means a completely integrated shop floor control system.

8 Initial Design of Gears Using an Artificial Neural Net (May/June 1993)

Many CAD (Computer Aided Design) systems have been developed and implemented to produce a superior quality design and to increase the design productivity in the gear industry. In general, it is true that a major portion of design tasks can be performed by CAD systems currently available. However, they can only address the computational aspects of gear design that typically require decision-making as well. In most industrial gear design practices, the initial design is the critical task that significantly effects the final results. However, the decisions about estimating or changing gear size parameters must be made by a gear design expert.

9 The Limits of the Computer Revoltion (May/June 1993)

In this issue of Gear Technology, we are focusing on using computers to their greatest advantage in gear design and manufacturing. In a sense, that's old news. It's a cliche to suggest that computers make our work life easier and more productive. No company that wishes to remain competitive in today's global manufacturing environment can afford to be without computers in all their manifestations. We need them in the office; we need them next to our desks in place of drafting boards; we need them on the shop floor.

10 Contact Analysis of Gears Using a Combined Finite Element and Surface Integral Method (July/August 1993)

The complete and accurate solution t the contact problem of three-dimensional gears has been, for the past several decades, one of the more sought after, albeit elusive goals in the engineering community. Even the arrival on the scene in the mid-seventies of finite element techniques failed to produce the solution to any but the most simple gear contact problems.

11 New Software and Hardware (January/February 1997)

New Software/Hardware updates for the months of January/February 1997.

12 How Many Mice Does It Take to Design a Gear (January/February 1995)

Gear design has long been a "black art." The gear shop's modern alchemists often have to solve problems with a combination of knowledge, experience and luck. In many cases, trial and error are the only effective way to design gears. While years of experience have produced standard gearsets that work well for most situations, today's requirements for quieter, more accurate and more durable gears often force manufacturers to look for alternative designs.

13 Ironclad Gears (July/August 1997)

This issue of Addendum is dedicated to gears that have served their country. There have been many, but among the most significant are surely those at work during the Civil War, when their application changed the nature of naval warfare forever. It's time to recall that role, namely, powering the revolving turret of the U.S.S. Monitor, one of the first "ironclad" vessels.

14 Design and Optimization of Planetary Gears Considering All Relevant Influences (November/December 2013)

Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.

15 30 Years of Calculation (June 2014)

Examining the history of software in mechanical engineering

16 Gear Manufacturer Benefits from CAM Initiatives and Advanced Manufacturing Technology (September/October 2014)

Multiple CAM initiatives at Snyder Industries are improving safety, quality and productivity for parts ranging from 50 to 5,000 lbs.

17 Getting the Right Tools (September/October 2014)

So there is little chance that they need the same software to assist with their work. Gone are the days when companies wrote their own code and process engineers thumbed the same tattered reference book.

18 Computer-Aided Finite Capacity Scheduling of a FLEAN Machining Cell (October 2013)

A look at some of the software options available to help with lean scheduling in a job shop

19 A Mechanically Marvelous Sea Saga (September 2013)

In the summer of 1974, long before Argo, there was “AZORIAN” -- the code name for a CIA gambit to recover cargo entombed in a sunken Soviet submarine -- the K-129 -- from the bottom of the Pacific Ocean. The challenge: exhume -- intact -- a 2,000-ton submarine and its suspicious cargo from 17,000 feet of water.

20 Gear Teeth With Byte (January/February 1998)

Computers are everywhere. It's gotten so that it's hard to find an employee who isn't using one in the course of his or her day - whether he be CEO or salesman, engineer or machinist. Everywhere you look, you find the familiar neutral-colored boxes and bright glowing screens. And despite the gear industry's traditional reluctance to embrace new technology, more and moe of what you find on those screens are gears.

21 Programmable Separation of Runout From Profile and Lead Inspection Data for Gear Teeth With Arbitrary Modifications (March/April 1998)

A programmable algorithm is developed to separate out the effect of eccentricity (radial runout) from elemental gear inspection date, namely, profile and lead data. This algorithm can be coded in gear inspection software to detect the existence, the magnitude and the orientation of the eccentricity without making a separate runout check. A real example shows this algorithm produces good results.

22 Romax Technology Launches Gearbox and Driveline Design Software Package (November/December 2012)

Romax Technology, the gearbox, bearing and driveline engineering specialist, has launched a new design software package that will increase speed, quality, creativity and innovation when designing gearboxes and drivelines. Called Concept, the new product delivers on the Romax vision of streamlining the end-to-end, planning-to-manufacture process with open, easy to use software solutions. It has been developed in close collaboration with engineers in the largest ground vehicle, wind energy and industrial equipment companies around the globe.

23 Worn Gear Contact Analysis (June/July 2013)

How does one perform a contact analysis for worn gears? Our expert responds.

24 Computerized Recycling of Used Gear Shaver Cutters (May/June 1993)

Most gear cutting shops have shelves full of expensive tooling used in the past for cutting gears which are no longer in production. It is anticipated that these cutters will be used again in the future. While this may take place if the cutters are "standard," and the gears to be cut are "standard," most of the design work done today involves high pressure angle gears for strength, or designs for high contact ratio to reduce noise. The re-use of a cutter under these conditions requires a tedious mathematical analysis, which is no problem if a computer with the right software is available. This article describes a computerized graphical display which provides a quick analysis of the potential for the re-use of shaving cutters stored in a computer file.

25 Practical Optimization of Helical Gears Using Computer Software (May/June 1993)

The aim of this article is to show a practical procedure for designing optimum helical gears. The optimization procedure is adapted to technical limitations, and it is focused on real-world cases. To emphasize the applicability of the procedure presented here, the most common optimization techniques are described. Afterwards, a description of some of the functions to be optimized is given, limiting parameters and restrictions are defined, and, finally, a graphic method is described.

26 Dontyne Debuts GATES Software (November/December 2007)

Dontyne Systems, a U.K. company founded by Michael Fish and David Palmer, recently unveiled a new software program for its Gear Production Suite.

27 Design Unit Evaluating New Software from SMT (January/February 2007)

MASTA 4.5.1 models complete transmissions and includes 3-D stress analysis.

28 Robust Transmission Design Through Automated Optimization of Virtual Prototypes (January/February 2005)

Romax Technology is automating the design iteration process to allow companies to be faster to market with the highest quality, most robust gear products.

29 New Approach to Computerized Design of Spur and Helical Gears (January/February 2005)

Applying "Dynamic Block Contours" allows the designer to predict gear quality at the earliest stage of the design process.

30 CFD Technology for Rotorcraft Gearbox Windage Aerodynamics Simulation (August 2009)

A computational fluid dynamics (CFD) method is adapted, validated and applied to spinning gear systems with emphasis on predicting windage losses. Several spur gears and a disc are studied. The CFD simulations return good agreement with measured windage power loss.

31 Industry News (March/April 2009)

The complete industry news section from the March/April 2009 issue of Gear Technology.

32 Software Bits (January/February 2004)

The latest software for gear design, engineering and manufacturing.

33 Application of the First International Calculation Method for Micropitting (May 2012)

The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published last December. It is the first and only official, international calculation method established for dealing with micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.

34 Gear Software - Without it, Hardware Goes Nowhere (May 2012)

It’s a brave, new hardware-software world out there. Players in the worldwide gear industry who don’t have plenty of both run the risk of becoming irrelevant—sooner than later.

35 The Effect of Flexible Components on the Durability, Whine, Rattle and Efficiency of an Automotive Transaxle Geartrain System (November/December 2009)

Gear engineers have long recognized the importance of considering system factors when analyzing a single pair of gears in mesh. These factors include important considerations such as load sharing in multi-mesh geartrains and bearing clearances, in addition to the effects of flexible components such as housings, gear blanks, shafts and carriers for planetary geartrains. However, in recent years, transmission systems have become increasingly complex—with higher numbers of gears and components—while the quality requirements and expectations in terms of durability, gear whine, rattle and efficiency have increased accordingly.

36 Gear Data Exchange Format (March/April 2005)

VDI has created a data exchange format that allows for the electronic exchange of all geometric parameters for cylindrical gears.

37 Productivity on Demand (March/April 2008)

Adaptation key to success for gear software developers.

38 Software-Based Process Design in Gear Finish Hobbing (May 2010)

In this paper, the potential for geometrical cutting simulations—via penetration calculation to analyze and predict tool wear as well as to prolong tool life—is shown by means of gear finish hobbing. Typical profile angle deviations that occur with increasing tool wear are discussed. Finally, an approach is presented here to attain improved profile accuracy over the whole tool life of the finishing hob.

39 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

40 KISSsoft Introduces New Features with Latest Release (September/October 2010)

Tooth contact under load is an important verification of the real contact conditions of a gear pair and an important add-on to the strength calculation according to standards such as ISO, AGMA or DIN. The contact analysis simulates the meshing of the two flanks over the complete meshing cycle and is therefore able to consider individual modifications on the flank at each meshing position.

41 Desktop Gear Engineering (May 2011)

An update on the latest gear design software from several vendors, plus what gear design engineers can expect next.

42 KISSsoft Update Integrates Parasolid CAD Core (May 2010)

The machine element package by KISSsoft for the design and optimization of components like gears, shafts, bearings and others is now available in the new version 04/2010.

43 Future Demands Next Generation of Standards and Practices in Gear Industry (May 2010)

Gear manufacturers are moving into an era that will see changes in both engineering practices and industry standards as new end-products evolve. Within the traditional automotive industry, carbon emission reduction legislation will drive the need for higher levels of efficiency and growth in electric and hybrid vehicles. Meanwhile, the fast growing market of wind turbines is already opening up a whole new area of potential for gearbox manufacturers, but this industry is one that will demand reliability, high levels of engineering excellence and precision manufacturing.

44 Software Bits 2008 (March/April 2008)

Synopsis on the latest developments at several gear design software developers.

45 Software Suite Serves Full Range of Gear Analysis (July 2008)

New software from AGMA helps gear designers calculate geometry and ratings for all types of bevel gears.

46 GPSys Critical to Spiral Bevel Gear Life (September/October 2008)

Impact Technologies considers commercial version of software package.

47 Doing It Right & Faster... The Computer's Impact on Gear Design & Manufacture (May/June 1992)

The availability of technical software has grown rapidly in the last few years because of the proliferation of personal computers. It is rare to find an organization doing technical work that does not have some type of computer. For gear designers and manufacturers, proper use of the computer can mean the difference between meeting the competition or falling behind in today's business world. The right answers the first time are essential if cost-effective design and fabrication are to be realized. The computer is capable of optimizing a design by methods that are too laborious to undertake using hard calculations. As speeds continue to climb and more power per pound is required from gear systems, it no longer is possible to design "on the safe side" by using larger service factors. At high rotational speeds a larger gear set may well have less capacity because of dynamic effects. The gear engineer of today must consider the entire gear box or even the entire rotating system as his or her domain.