Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

Surface Technology - Search Results

Articles About Surface Technology


1 Gear Technology: The Next Ten Years (September/October 1994)

A little more than ten years ago this month, the first Gear Technology came off the presses. It was a fledgling effort in every respect. The gear industry had never a magazine of its very own before. Those of us involved in its production were like first-time parents; we were proud and excited, but unsure of what we'd let ourselves in for. None of us knew if this baby could really fly.

2 Gear Technology The Next Phase (November/December 1993)

This issue of Gear Technology marks another milestone in the life of our magazine. After publishing 51 issues - nearly 200 articles containing close to 2,500 pages - we're ready to try something new.

3 Changes Changes (January/February 1995)

Welcome to the new Gear Technology. With this issue we begin bringing you a new look - a new cover, new graphics, a new, broader and more inclusive editorial focus. Our goal is to be an even better resource for the entire gear industry.

4 Transitions (July/August 1995)

Beginning with this issue, one of the last bits of the "old" Gear Technology is gone. From now on we'll be running the new picture of me you see on this page. It was time, my art and editorial staff explained to me, to move ahead with the rest of the updated art and editorial in the magazine. (I emphatically deny that the real motivation for the new picture was putting a stop to the ever-increasing number of jabs from certain friends about my "Dorian Gray" look.)

5 Questions To Keep You Up At Night (November/December 1995)

Sometimes in the pressure to meet deadlines and handle the Crisis of the Day, we lose sight of the forest for the trees. As a partial cure for this syndrome, I recently reviewed the six interviews with gear industry leaders that have appeared in our pages during the last year, trying to get a grasp of a larger picture. It struck me with renewed force how six men, each with a lifetime of experience in this business, see the gear industry forest the same way.

6 Our Readers Discuss Gear Rattle, Gear Books, and Gear Tech (January/February 1993)

Investigation of Gear Rattle Phenomena The article by Messrs. Rust, Brandl and Thien was very interesting in its description of the problem and of some of the interactions which occur.

7 A Hopeful New Year (January/February 1993)

It always strikes me as something of an irony that the brightest holidays of the year fall in the deepest part of the darkest season. They come when the days are the shortest, the clouds the thickest, the weather (at least in Chicago), the worst. And yet it is at precisely this time when we celebrate the happier human emotions of family, love, and charity and somewhat arbitrarily declare a "new" year.

8 The World--Our Market (May/June 1987)

As the time came to write this editorial, the replies to our survey from the last issue were just starting to pour in. We were gratified by the number of responses we received and by the amount of time many of you spent answering in great detail the text questions on the survey. Because of this unusually large response, it will take us some months to log, digest and respond to all the data. Thank you for this nice "problem."

9 Editorial (March/April 1987)

As Gear Technology moves toward its third anniversary, we feel that we have reached a point in our development where it is time to pause, reflect on our accomplishments and plan for the future.

10 Sustaining Expertise in the Gear Industry (June/July 2012)

Expertise is a resource that's hard to sustain. We're doing our part via our "Ask the Expert" feature. How about you?

11 Looking To The Future (May/June 1990)

Six years ago this month, the very first issue of Gear Technology, the Journal of Gear Manufacturing, went to press. The reason for starting the publication was a straightforward one: to provide a forum for the presentation of the best technical articles on gear-related subjects from around the world. We wanted to give our readers the information they need to solve specific problems, understanding new technologies, and to be informed about the latest applications in gear design and manufacturing. The premise behind Gear Technology was also a straightforward one: the better informed our readers were about the technology, the more competitive they and their companies would be int he world gear market.

12 Looking To The Future - Part II (November/December 1990)

Beginning with our next issue, some of the promised changes in format for Gear Technology will begin showing up in these pages. As part of our commitment to provide you with important information about the gear and gear products industry, we are expanding our coverage. In addition to continuing to publish some of the best results of gear research and development throughout the world, we will be adding special columns covering vital aspects of the gearing business.

13 Pulse Beat (March/April 1996)

Every now and then a magazine has to take its own pulse or lose sight of its key mission - providing its readers with information they want. We did it this last year through surveys, interviews with subscribers and focus groups. Our basic question was, how are we doing?

14 geartechnology.com And Other Adventures (July/August 1996)

You've been reading about it, talking about it, maybe even trying it. Gear Technology has jumped aboard it feet first and begun a voyage on the World Wide Web. Beginning with this issue, an electronic version of the magazine will be online. For those of us who still find the fax machine amazing technology, this is a great leap.

15 Industry News (October 2013)

The complete Industry News section from the October 2013 issue of Gear Technology.

16 Industry News (June/July 2013)

The complete Industry News section from the June/July 2013 issue of Gear Technology.

17 Pearls of Wisdom (January/February 2014)

Gear Technology magazine begins the celebration of our 30-year anniversary.

18 The Past, Present and Future of Gear Manufacturing (June 2014)

The gear industry is full of storytellers. It's a niche market that boasts a remarkable cast of characters that have been sharing their stories with us for 30 years. In that time, the editors and staff of Gear Technology magazine have had the privilege to report the ins and outs of this highly-specialized industry. From technical articles to case studies and features, the main focus of this magazine has been to "provide a forum of discovery and innovation for you, the gear manufacturing industry." Our Publisher, Michael Goldstein, said as much in our inaugural issue of May/June 1984.

19 Proverbs (June 2014)

Publisher Michael Goldstein describes what it means to him that Gear Technology is celebrating its 30th anniversary.

20 Looking Back, Looking Forward (January/February 2013)

Publisher Michael Goldstein explores Gear Technology's history and its future as he introduces the back issue archive online and our new features and columns for 2013.

21 GT Extras (January/February 2013)

Gear Technology's complete back issue archive is now available online. Read more about the archive in this issue's GT Extras. Also highlighted are a new video from Koepfer and the Gear Technology e-mail newsletter.

22 Meeting The Challenge (May/June 1998)

Every once in a while something happens to fundamentally change the nature of your business. Despite the best of intentions and the most careful planning, there's no way we can anticipate every event. What do you do, for example, when your two biggest competitors merge, when the economy collapses in the region that imports your products or when key employees leave your company? Your reactions may make the difference between success and struggling to survive.

23 Two columns for the price of one... (November/December 1996)

Just back from IMTS and once again, I'm struck by the enormous vitality and strength of the manufacturing sector of the U.S. economy. It has made a phoenix-like rise from the grave dug for it by pundits in the '80s and has come back more robust and competitive than ever.

24 What the Internet Means To Your Gear Business (July/August 1998)

Let's face it. The Internet is still, to many of us, exciting, confusing, terrifying and frustrating by turns. The buzzwords change so fast that even the most high tech companies have a hard time keeping up. Cyberspace. Firewall, Java. E-commerce. The list goes on.

25 Romax Technology Launches Gearbox and Driveline Design Software Package (November/December 2012)

Romax Technology, the gearbox, bearing and driveline engineering specialist, has launched a new design software package that will increase speed, quality, creativity and innovation when designing gearboxes and drivelines. Called Concept, the new product delivers on the Romax vision of streamlining the end-to-end, planning-to-manufacture process with open, easy to use software solutions. It has been developed in close collaboration with engineers in the largest ground vehicle, wind energy and industrial equipment companies around the globe.

26 Industry News (November/December 2012)

The complete Industry News section from the November/December 2012 issue of Gear Technology.

27 Viewpoint (November/December 1986)

Positive feedback regarding Gear Technology, the Journal of Gear Manufacturing, from some of its new readers.

28 Notes From the Editor's Desk (July/August 1986)

The last two months have been both a time of difficulty and of growth for Gear Technology. Unexpectedly, I found myself in the hospital having surgery, and consequently out of commission for several weeks. At the same time, two individuals on our staff lost family members, and most of this period saw us getting ready for this preshow IMTS issue while being seriously short-staffed.

29 Surface Fatigue Life on CBN and Vitreous Ground Carburized and Hardened AISA 9310 Spur Gears (January/February 1990)

Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

30 A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral-Bevel Gears (March/April 1986)

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

31 Improving Gear Manufacturing Quality With Surface Texture Measurement (March/April 1993)

The working surfaces of gear teeth are often the result of several machining operations. The surface texture imparted by the manufacturing process affects many of the gear's functional characteristics. To ensure proper operation of the final assembly, a gear's surface texture characteristics, such as waviness and roughness, can be evaluated with modern metrology instruments.

32 Gear Tip Chamfer and Gear Noise; Surface Measurement of Spiral Bevel Gear Teeth (July/August 1993)

Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?

33 Basic Honing & Advanced Free-Form Honing (July/August 1997)

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

34 Effect of Shot Peening on Surface Fatigue Life of Carburized and Hardened AISI 1910 Spur Gears (January/February 1986)

Gear surface fatigue endurance tests were conducted on two groups of 10 gears each of carburized and hardened AlSI 9310 spur gears manufactured from the same heat of material

35 Endurance Limit for Contact Stress in Gears (October/November 1984)

With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.

36 The Effect of Superfinishing on Gear Micropitting (March/April 2009)

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

37 Superfinishing Gears -- The State of the Art (November/December 2003)

Superfinishing the working surfaces of gears and their root fillet regions results in performance benefits.

38 Influence of Coatings and Surface Improvements on the Lifetime of Gears (July/August 2004)

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.

39 Influence of Surface Roughness on Gear Pitting Behavior (May/June 2006)

In earlier studies, surface roughness has been shown to have a significant influence on gear pitting life. This paper discusses how high surface roughness introduces a wear mechanism that delays the formation of pits. Accompanied by a full-page technical review.

40 Micropitting of Big Gearboxes: Influence of Flank Modification and Surface Roughness (May 2011)

Most research on micropitting is done on small-sized gears. This article examines whether those results are also applicable to larger gears.

41 Obtaining Meaningful Surface Roughness Measurements on Gear Teeth (July/August 1997)

Surface roughness measuring of gear teeth can be a very frustrating experience. Measuring results often do not correlate with any functional characteristic, and many users think that they need not bother measuring surface roughness, since the teeth are burnished in operation. They mistakenly believe that the roughness disappears in a short amount of time. This is a myth! The surface indeed is shiny, but it still has considerable roughness. In fact, tests indicate that burnishing only reduces the initial roughness by approximately 25%.

42 Case Study Involving Surface Durability and Improved Surface Finish (August 2012)

Gear tooth wear and micropitting are very difficult phenomena to predict analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.

43 Editorial (May/June 1984)

Over the years, we have traveled extensively throughout the industrialized world, and became increasingly aware of the availability of enormous amounts of technical writing concerning research, experiments, and techniques in the gear manufacturing field. New manufacturing methods, materials, and machines were continuously being developed, but the technical information about them was not readily available to those that could best use it. There was no central source for disseminating this knowledge.

44 Report from India (March/April 2012)

Publisher Michael Goldstein describes his experiences at the IPTEX 2012 show and the unveiling of Gear Technology India.

45 Notes from the Editor's Desk (August/September 1984)

THANK YOU! The response to our first issue has been extremely exciting for us. Our advertisers have told us GEAR TECHNOLOGY is being talked about wherever they go. Thank you for the wonderful and enthusiastic reception.

46 Viewpoint (January/February 1986)

As I travel around the country visiting with many of our customers, I am finding that not only are we, as an advertiser in the journal, meeting our advertising needs, but you are also meeting those very high ideals that you put before us during that meeting.

47 Notes From the Editor's Desk (May/June 1986)

This issue of Gear Technology, The Journal of Gear Manufacturing, marks the end of our second year of publication. As we approach our third year, it is time to review our statement of purpose. Gear Technology's primary goal was and is to be a reference source and a forum for the American Gear industry, and to advance gear technology throughout the world.

48 Namaste (August 2011)

In India, “namaste” is used as a common greeting. Although it translates literally to “I bow to you,” it’s often used the same way we use “hello” or “good-bye.” It’s a phrase commonly exchanged between individuals when they meet, and it’s also used as a salutation when they part. I’m using the phrase here because I’d like to introduce you to an exciting new project and venture for Randall Publications LLC.

49 Reaching Out (March/April 2011)

Publisher Michael Goldstein describes the success of Gear Technology's new e-mail newsletter programs.

50 Heat Treat Suppliers Focused on Gears (August 2013)

Heat treat suppliers look to the gear industry and the upcoming combined Gear Expo/Heat Treat 2013 for new business.

51 Repair of High-Value, High-Demand Spiral Bevel Gears by Superfinishing (October 2012)

Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UH–60 helicopter tail rotor drivetrain. As spiral bevel gears for the UH–60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.

52 Setting Load Parameters for Viable Fatigue Testing of Gears in Powertrain Axles Part I: Single-Reduction Axles (August 2014)

This presentation introduces a new procedure that - derived from exact calculations - aids in determining the parameters of the validation testing of spiral bevel and hypoid gears in single-reduction axles.

53 The Gear Industry's Global Information Source (May 2007)

Have you ever been to Malaysia? How about Indonesia, Brazil, Slovakia or Russia? Well, we have. We go there every issue.

54 Crossroads and Transitions, Part I (May 2009)

Michael Goldstein talks about 25 years of Gear Technology, looking behind as well as ahead.

55 Effects of Gear Surface Parameters on Flank Wear (January/February 2009)

Non-uniform gear wear changes gear topology and affects the noise performance of a hypoid gear set. The aggregate results under certain vehicle driving conditions could potentially result in unacceptable vehicle noise performance in a short period of time. This paper presents the effects of gear surface parameters on gear wear and the measurement/testing methods used to quantify the flank wear in laboratory tests.