Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

abrasive wear - Search Results

Articles About abrasive wear


1 Classification of Types of Gear Tooth Wear - Part I (November/December 1992)

The phenomena of deterioration of surfaces are generally very complex and depend on numerous conditions which include the operating conditions, the type of load applied, the relative speeds of surfaces in contact, the temperature, lubrication, surfaces hardness and roughness, and the compatibility and nature of materials.

2 Classification of Types of Gear Tooth Wear - Part II (January/February 1993)

The first part of this article included abrasive wear with two bodies, streaks and scoring, polishing, and hot and cold scuffing. This part will deal with three-body wear, scratches or grooves, and interference wear. Normal, moderate, and excessive wear will be defined, and a descriptive chart will be presented.

3 Misalignment No Beauty in Gearsets (May/June 1991)

When we have problems with gearset failure, a common diagnosis is misalignment. What exactly is that and how do we prevent it? The second most common "killer" of good gear sets is misalignment (dirt, or abrasive wear, is first). Gear teeth simply won't carry the load if they don't touch, and the portion that does touch has to carry an overload to make up for the missing contact area.

4 Our Experts Discuss... (March/April 1991)

Question: I have just become involved with the inspection of gears in a production operation and wonder why the procedure specifies that four involute checks must be made on each side of the tooth of the gear being produced, where one tooth is checked and charted in each quadrant of the gear. Why is this done? These particular gears are checked in the pre-shaved, finish-shaved, and the after-heat-treat condition, so a lot of profile checking must be done.

5 Size and Material Influence on the Tooth Root, Pitting, Scuffing and Wear Load-Carrying Capacity of Fine-Module Gears (September 2011)

In this study, limiting values for the load-carrying-capacity of fine-module gears within the module range 0.3–1.0 mm were determined and evaluated by comprehensive, experimental investigations that employed technical, manufacturing and material influence parameters.

6 Software-Based Process Design in Gear Finish Hobbing (May 2010)

In this paper, the potential for geometrical cutting simulations—via penetration calculation to analyze and predict tool wear as well as to prolong tool life—is shown by means of gear finish hobbing. Typical profile angle deviations that occur with increasing tool wear are discussed. Finally, an approach is presented here to attain improved profile accuracy over the whole tool life of the finishing hob.

7 A Rational Procedure for Designing Minimum-Weight Gears (November/December 1991)

A simple, closed-form procedure is presented for designing minimum-weight spur and helical gearsets. The procedure includes methods for optimizing addendum modification for maximum pitting and wear resistance, bending strength, or scuffing resistance.

8 Point-Surface-Origin Macropitting Caused by Geometric Stress Concentration (January/February 2011)

Point-surface-origin (PSO) macropitting occurs at sites of geometric stress concentration (GSC) such as discontinuities in the gear tooth profile caused by micropitting, cusps at the intersection of the involute profile and the trochoidal root fillet, and at edges of prior tooth damage, such as tip-to-root interference. When the profile modifications in the form of tip relief, root relief, or both, are inadequate to compensate for deflection of the gear mesh, tip-to-root interference occurs. The interference can occur at either end of the path of contact, but the damage is usually more severe near the start-of-active-profile (SAP) of the driving gear.

9 Comparing Surface Failure Modes in Bearings and Gears: Appearances vs. Mechanisms (July/August 1992)

In the 1960's and early 1970's, considerable work was done to identify the various modes of damage that ended the lives of rolling element bearings. A simple summary of all the damage modes that could lead to failure is given in Table 1. In bearing applications that have insufficient or improper lubricant, or have contaminants (water, solid particles) or poor sealing, failure, such as excessive wear or vibration or corrosion, may occur, rather than contact fatigue. Usually other components in the overall system besides bearings also suffer. Over the years, builders of transmissions, axles, and gear boxes that comprise such systems have understood the need to improve the operating environment within such units, so that some system life improvements have taken place.

10 Worn Gear Contact Analysis (June/July 2013)

How does one perform a contact analysis for worn gears? Our expert responds.

11 Relationship Between Wear and Pitting Phenomena in Worm Gears (May/June 1998)

Worm gears display unique behavior of surfaces because of the presence of wear phenomena in addition to contact pressure phenomena.

12 Gear Wear Caused By Contaminated Oils (September/October 1996)

The diagnosis and prevention of gear tooth and bearing wear requires the discovery and understanding of the particular mechanism of wear, which in turn indicates the best method of prevention. Because a gearbox is a tribologically dependent mechanism, some understanding of gear and bearing tribology is essential for this process. Tribology is the general term for the study and practice of lubrication, friction and wear. If tribology is neglected or considered insignificant, poor reliability and short life will result.

13 Tooth-Bending Effects in Plastic Spur Gears (September/October 2007)

This paper describes the investigation of a steel-and-plastic gear transmission and presents a new hypothesis on the governing mechanism in the wear of plastic gears.

14 Additives: Anti-Wear vs Anti-Scuff (August 2014)

A reader asks: While I have read a reasonable amount of the literature on the pros and cons of anti-wear and anti-scuff additives, I find that the more I read, the more confused I become. I could use some clarity in my life.

15 Calculation of Slow Speed Wear of Lubricated Gears (November/December 1985)

On gear drives running with pitch line velocities below 0.5 m/s so called slow speed wear is often observed. To solve some problems, extensive laboratory test work was started 10 years ago. A total of circ. 300,000 h running time on FZG back-to-back test rigs have been run in this speed range.

16 Enhanced Product Performance--Through CBN Grinding (September/October 1988)

Modern manufacturing processes have become an ally of the product designer in producing higher quality, higher performing components in the transportation industry. This is particularly true in grinding systems where the physical properties of CBN abrasives have been applied to improving cycle times, dimensional consistency, surface integrity and overall costs. Of these four factors, surface integrity offers the greatest potential for influencing the actual design of highly stressed, hardened steel components.

17 Grinding of Spur and Helical Gears (July/August 1992)

Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.

18 Hard Gear Finishing (March/April 1988)

Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.

19 CNC Controlled CBN Form Grinding (May/June 1984)

Borazon is a superabrasive material originally developed by General Electric in 1969. It is a high performance material for machining of high alloy ferrous and super alloy materials. Borazon CBN - Cubic Born Nitride - is manufactured with a high temperature, high pressure process similar to that utilized with man-made diamond. Borazon is, next to diamond, the hardest abrasive known; it is more than twice as hard as aluminum oxide. It has an extremely high thermal strength compared to diamond. It is also much less chemically reactive with iron, cobalt or nickel alloys.

20 Grinding and Abrasives (May/June 2004)

Flexibility and productivity are the keywords in today’s grinding operations. Machines are becoming more flexible as manufacturers look for ways to produce more parts at a lower cost. What used to take two machines or more now takes just one.

21 Gear Grinding Comes of Age (July/August 1995)

In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.

22 Hard Gear Finishing With CBN-Basic Considerations (May/June 1998)

For over 50 years, grinding has been an accepted method of choice for improving the quality of gears and other parts by correcting heat treat distortions. Gears with quality levels better than AGMA 10-11 or DIN 6-7 are hard finished, usually by grinding. Other applications for grinding include, but are not limited to, internal/external and spur/helical gear and spline forms, radius forms, threads and serrations, compressor rotors, gerotors, ball screw tracks, worms, linear ball tracks, rotary pistons, vane pump rotators, vane slots, and pump spindles.

23 In Search of a Competitive Advantage (March/April 2014)

The grinding/abrasives market is rapidly changing, thanks to new technology, more flexibility and an attempt to lower customer costs. Productivity is at an all-time high in this market, and it’s only going to improve with further R&D. By the time IMTS 2014 rolls around this September, the gear market will have lots of new toys and gadgets to offer potential customers. If you haven’t upgraded any grinding/abrasives equipment in the last five years, now might be a good time to consider the investment.

24 Effects of Gear Surface Parameters on Flank Wear (January/February 2009)

Non-uniform gear wear changes gear topology and affects the noise performance of a hypoid gear set. The aggregate results under certain vehicle driving conditions could potentially result in unacceptable vehicle noise performance in a short period of time. This paper presents the effects of gear surface parameters on gear wear and the measurement/testing methods used to quantify the flank wear in laboratory tests.

25 Brad Foote and 3M Collaborate on Testing of Ground Parts (March/April 2014)

Cubitron II wheels are put to the test in this case study.

26 Product News (August 2013)

The complete Product News Section from the August 2013 issue of Gear Technology.

27 Industry News (January/February 2013)

The complete Industry News section from the January/February 2013 issue of Gear Technology.

28 Influence of Coatings and Surface Improvements on the Lifetime of Gears (July/August 2004)

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.