aerospace gearboxes - Search Results

Articles About aerospace gearboxes

Articles are sorted by RELEVANCE. Sort by Date.

1 It's No American Dream: Pratt & Whitney GTF Engine Now a Reality... (November/December 2011)

In the August 2008 issue of Gear Technology, we ran a story (“Gearbox Speed Reducer Helps Fan Technology for ‘Greener” Jet Fuel Efficiency’) on the then ongoing, extremely challenging and protracted development of Pratt & Whitney’s geared turbofan (GTF) jet engine.

2 Tapping into the Wind Gearbox Supply Chain (January/February 2010)

Although typically considered a late bloomer in the call to wind energy arms, the United States is now the number one wind power producer in the world with over 25,000 MW installed by the end of 2008, according to the Global Wind Energy Council in January 2009.

3 Wind Standard Closer to Completion (March/April 2011)

Faithful Gear Technology readers may recall that our July 2009 issue contained an update of the deliberations provided by Bill Bradley. Now, almost two years later, there is an ISO/IEC wind turbine gearbox standard out for draft international standard ballot (ballot closes 2011-05-17).

4 Micropitting of Big Gearboxes: Influence of Flank Modification and Surface Roughness (May 2011)

Most research on micropitting is done on small-sized gears. This article examines whether those results are also applicable to larger gears.

5 Wind Turbine Pitch and Yaw Drive Manufacturers Draw Breath as Market Slows (January/February 2010)

The global wind energy market has seen average growth rates of 28 percent over the last 10 years, according to the Global Wind Energy Council (GWEC), creating major challenges for the component supply industry. GWEC also forecasts an average growth rate of 22 percent for the next five years, which if realized, will continue to put pressure on suppliers of turbine components.

6 Optimism in Wind Abounds (January/February 2009)

Big gears and wind turbines go together like bees and honey, peas and carrots, bread and butter and—well, you get the idea. Wind isn’t just big right now, it’s huge. The wind industry means tremendous things for the energy dependent world we live in and especially big things for gear manufacturers and other beleaguered American industries.

7 Innovative Concepts for Grinding Wind Power Energy Gears (June 2009)

This article shows the newest developments to reduce overall cycle time in grinding wind power gears, including the use of both profile grinding and threaded wheel grinding.

8 An International Wind Turbine Gearbox Standard (July 2009)

Industrial gear standards have been used to support reliability through the specification of requirements for design, manufacturing and verification. The consensus development of an international wind turbine gearbox standard is an example where gear products can be used in reliable mechanical systems today. This has been achieved through progressive changes in gear technology, gear design methods and the continual development and refinement of gearbox standards.

9 Wind Turbines: Clean Energy, but Energy Efficient (June/July 2011)

We talked energy efficiency with some major players in the lubricants industry— but with a focus on their products’ impact regarding energy efficiency of gears and gearboxes in wind turbines.

10 Comparison of Test Rig and Field Measurement Results on Gearboxes for Wind Turbines (October 2011)

This article describes some of the most important tests for prototypes conducted at Winergy AG during the product development process. It will demonstrate that the measurement results on the test rig for load distribution are in accordance with the turbine measurements.

11 Understanding Oil Analysis: How it Can Improve Reliability of Wind Turbine Gearboxes (November/December 2013)

Historically, wind turbine gearbox failures have plagued the industry. Yet an effective oil analysis program will increase the reliability and availability of your machinery, while minimizing maintenance costs associated with oil change-outs, labor, repairs and downtime. Practical action steps are presented here to improve reliability.

12 Thermal Behavior of a High-Speed Gear Unit (January/February 2016)

In this paper a thermal network model is developed to simulate the thermal behavior of a high-speed, one-stage gear unit which is jet-lubricated.

13 Worm Gear Efficiency Estimation and Optimization (June 2016)

This paper outlines the comparison of efficiencies for worm gearboxes with a center distance ranging from 28 – 150 mm that have single reduction from 5 to 100:1. Efficiencies are calculated using several standards (AGMA, ISO, DIN, BS) or by methods defined in other bibliographic references. It also deals with the measurement of torque and temperature on a test rig — required for the calibration of an analytical model to predict worm gearbox efficiency and temperature. And finally, there are examples of experimental activity (wear and friction measurements on a blockon- ring tribometer and the measurements of dynamic viscosity) regarding the effort of improving the efficiency for worm gear drivers by adding nanoparticles of fullerene shape to standard PEG lubricant

14 Parallel Axis Gear Grinding: Theory & Application (November/December 2000)

The goal of gear drive design is to transit power and motion with constant angular velocity. Current trends in gear drive design require greater load carrying capacity and increased service life in smaller, quieter, more efficient gearboxes. Generally, these goals are met by specifying more accurate gears. This, combined with the availability of user-friendly CNC gear grinding equipment, has increased the use of ground gears.

15 New Guidelines For Wind Turbine Gearboxes (May/June 1998)

The wind turbine industry has been plagued with gearbox failures, which cause repair costs, legal expenses, lost energy production and environmental pollution.

16 Flank Breakage on Gears for Energy Systems (November/December 2011)

Gear flank breakage can be observed on edge zone-hardened gears. It occurs, for example, on bevel gears for water turbines, on spur gears for wind energy converters and on single- and double-helical gears for other industrial applications.

17 Developing a Total Productive Maintenance System (May/June 1995)

There's a reason they call it catastrophic gear failure: For example, if the line goes down at a large aluminum rolling mill because a gear set goes bad, the cost can run up to a whopping $200,000 a week. Even in smaller operations, the numbers alone (not to mention all the other problems) can be a plant manager's worst nightmare.

18 Industry News (January/February 2017)

News from around the Gear Industry

19 Oil-Out Endurance Under the Lens (January/February 2017)

Oil-out conditions, or conditions in which an aircraft is operating without any oil in its gearbox or transmission, are devastating for an aircraft's hardware. Even the sturdiest gears usually can’t last 30 minutes under such conditions before they catastrophically fail, and the whole system usually follows shortly after. That doesn’t leave pilots with a whole lot of time to find a suitable location to land in the case of an oil-out emergency.

20 Gear Failure Analysis Involving Grinding Burn (January/February 2009)

When gears are case-hardened, it is known that some growth and redistribution of stresses that result in geometric distortion will occur. Aerospace gears require post case-hardening grinding of the gear teeth to achieve necessary accuracy. Tempering of the case-hardened surface, commonly known as grinding burn, occurs in the manufacturing process when control of the heat generation at the surface is lost.

21 Hobbing Precise, Uniform End Chamfers (March/April 2004)

The seemingly simple process of placing a uniform chamfer on the face ends of spur and helical gears, at least for the aerospace industry, has never been a satisfactory or cost effective process.

22 Blue Skies for Aerospace Parts Manufacturing (March/April 2006)

Aerospace manufacturing has seen quite a turnaround in the past few years. The world's manufacturers of airplanes, helicopters, missiles, space vehicles and satellites are all extremely busy right now--and that's keeping quite a few gear manufacturers busy as well.

23 Aerospace Gearing Research - An Update (June 2009)

A look at several American organizations doing cutting edge gear-related research for aerospace applications.

24 High-Tech Risks and Rewards (June 2009)

Aerospace/Defense contracts offer unique challenges for gear manufacturers.

25 Thermal Behavior of Helical Gears (May 2007)

An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied.

26 Repair via Isotropic Superfinishing of Aircraft Transmission Gears (May 2009)

The objective of this paper is to demonstrate that transmission gears of rotary-wing aircraft, which are typically scrapped due to minor foreign object damage (FOD) and grey staining, can be repaired and re-used with signifi cant cost avoidance. The isotropic superfinishing (ISF) process is used to repair the gear by removing surface damage. It has been demonstrated in this project that this surface damage can be removed while maintaining OEM specifications on gear size, geometry and metallurgy. Further, scrap CH-46 mix box spur pinions, repaired by the ISF process, were subjected to gear tooth strength and durability testing, and their performance compared with or exceeded that of new spur pinions procured from an approved Navy vendor. This clearly demonstrates the feasibility of the repair and re-use of precision transmission gears.

27 Gearbox Speed Reducer Helps Fan Technology for "Greener" Jet Fuel Efficiency (August 2008)

Today’s ever-evolving global economic engine is, in many ways, a wonderful phenomenon; you know—a rising-tide-lifting-all-boats, trickle-down-theory-of-economics dynamic at work.

28 Analysis and Testing of Gears with Asymmetric Involute Tooth Form and Optimized Fillet Form for Potential Application in Helicopter Main Drives (June/July 2011)

Gears with an asymmetric involute gear tooth form were analyzed to determine their bending and contact stresses relative to symmetric involute gear tooth designs, which are representative of helicopter main-drive gears.

29 Minimization of In-Process Corrosion of Aerospace Gears (July/August 2002)

Carbon steels have primarily been used to manufacture aerospace gears due to the steels' mechanical characteristics. An alloyed low carbon steel is easily case-hardened to obtain a hard wear surface while maintaining the ductile core characteristics. The microstructure achieved will accept the heavy loading, shocks, and elevated temperatures that gears typically experience in applications. The carbon steel machinability allows for general machining practices to be employed when producing aerospace gears versus the more advanced metal removal processes required by stainless and nickel-based alloys.

30 Boom or Bust - Are You in the Right Markets (June/July 2013)

Over the past few months we've talked with a lot of gear manufacturers. Many of them tell us business is strong, while others are struggling with reduced demand. The difference between them isn't so much in the quality of their manufacturing operations, but rather trends in the end markets they serve.

31 Influence of Gear Design on Gearbox Radiated Noise (January/February 1998)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.

32 Tooth Modification and Spur Gear Tooth Strain (September/October 1996)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gear box. Reduction of this noise is a NASA and U.S. Army goal.

33 Surface Pitting Fatigue Life of Noninvolute Low-Contact-Ratio Gears (May/June 1991)

Spur gear endurance tests were conducted to investigate the surface pitting fatigue life of noninvolute gears with low numbers of teeth and low contact ratios for the use in advanced application. The results were compared with those for a standard involute design with a low number of teeth. The gear pitch diameter was 8.89 cm (3.50 in.) with 12 teeth on both gear designs. Test conditions were an oil inlet temperature of 320 K (116 degrees F), a maximum Hertz stress of 1.49 GPa (216 ksi), and a speed of 10,000 rpm. The following results were obtained: The noninvolute gear had a surface pitting fatigue life approximately 1.6 times that of the standard involute gear of a similar design. The surface pitting fatigue life of the 3.43-pitch AISI 8620 noninvolute gear was approximately equal to the surface pitting fatigue life of an 8-pitch, 28-tooth AISI 9310 gear at the same load, but at a considerably higher maximum Hertz stress.

34 Design Guidelines for High-Capacity Bevel Gear Systems (January/February 1992)

The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum. A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form: Integrated gear/shaft/bearing systems Effects of rim thickness on gear tooth stresses Resonant response

35 An Experimental Investigation of Aerospace-Quality Gears Operating in Loss-of-Lubrication Condition (August 2013)

This work establishes a baseline for aerospace spur gear behavior under oil-off conditions. The collected test results document a different oil-off time, dictated by material used.