aircraft - Search Results

Articles About aircraft

Articles are sorted by RELEVANCE. Sort by Date.

1 Direct Gear Design for Spur and Helical Involute Gears (September/October 2002)

Modern gear design is generally based on standard tools. This makes gear design quite simple (almost like selecting fasteners), economical, and available for everyone, reducing tooling expenses and inventory. At the same time, it is well known that universal standard tools provide gears with less than optimum performance and - in some cases - do not allow for finding acceptable gear solutions. Application specifies, including low noise and vibration, high density of power transmission (lighter weight, smaller size) and others, require gears with nonstandard parameters. That's why, for example, aviation gear transmissions use tool profiles with custom proportions, such as pressure angle, addendum, and whole depth. The following considerations make application of nonstandard gears suitable and cost-efficient:

2 Gearbox Speed Reducer Helps Fan Technology for "Greener" Jet Fuel Efficiency (August 2008)

Today’s ever-evolving global economic engine is, in many ways, a wonderful phenomenon; you know—a rising-tide-lifting-all-boats, trickle-down-theory-of-economics dynamic at work.

3 Repair via Isotropic Superfinishing of Aircraft Transmission Gears (May 2009)

The objective of this paper is to demonstrate that transmission gears of rotary-wing aircraft, which are typically scrapped due to minor foreign object damage (FOD) and grey staining, can be repaired and re-used with signifi cant cost avoidance. The isotropic superfinishing (ISF) process is used to repair the gear by removing surface damage. It has been demonstrated in this project that this surface damage can be removed while maintaining OEM specifications on gear size, geometry and metallurgy. Further, scrap CH-46 mix box spur pinions, repaired by the ISF process, were subjected to gear tooth strength and durability testing, and their performance compared with or exceeded that of new spur pinions procured from an approved Navy vendor. This clearly demonstrates the feasibility of the repair and re-use of precision transmission gears.

4 Repair of High-Value, High-Demand Spiral Bevel Gears by Superfinishing (October 2012)

Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UH–60 helicopter tail rotor drivetrain. As spiral bevel gears for the UH–60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.

5 EHL Film Thickness, Additives and Gear Surface Fatigue (May/June 1995)

Aircraft transmissions for helicopters, turboprops and geared turbofan aircraft require high reliability and provide several thousand hours of operation between overhauls. In addition, They should be lightweight and have very high efficiency to minimize operating costs for the aircraft.

6 Oil-Out Endurance Under the Lens (January/February 2017)

Oil-out conditions, or conditions in which an aircraft is operating without any oil in its gearbox or transmission, are devastating for an aircraft's hardware. Even the sturdiest gears usually can’t last 30 minutes under such conditions before they catastrophically fail, and the whole system usually follows shortly after. That doesn’t leave pilots with a whole lot of time to find a suitable location to land in the case of an oil-out emergency.

7 Surface Fatigue Life on CBN and Vitreous Ground Carburized and Hardened AISA 9310 Spur Gears (January/February 1990)

Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

8 Test Facility Simulation Results for Aerospace Loss-of-Lubrication of Spur Gears (June 2015)

Prior to receiving airworthiness certification, extensive testing is required during the development of rotary wing aircraft drive systems. Many of these tests are conducted to demonstrate the drive system’s ability to operate at extreme conditions, i.e. — beyond that called for in the normal to maximum power operating range.