assembly - Search Results

Articles About assembly

Articles are sorted by RELEVANCE. Sort by Date.

1 Job Shop Lean - Assembly (May 2013)

The Tiger Team from Hoerbiger looks for ways to cut waste and improve throughput in the company's assembly cell.

2 Gear Mesh Assembly (May 2015)

When assembling a pair of gears, what is a good method for setting and checking their mesh?

3 Importance of Contact Pattern in Assembly of Bevel vs Cylindrical Gears (August 2014)

Why is there so much emphasis on the tooth contact pattern for bevel gears in the assembled condition and not so for cylindrical gears, etc?

4 Transmission Errors and Bearing Contact of Spur, Helical, and Spiral Bevel Gears (July/August 1990)

An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.

5 Assembling Spiral Gears: Double Taper Can Be Double Trouble (January/February 2006)

Bevel gear systems are particularly sensitive to improper assembly. Slight errors in gear positioning can turn a well-designed, quality manufactured gear set into a noisy, prone-to-failure weak link in your application.

6 Refurbishing a Ball Mill ; Bevel Gear Backlash (September 2012)

Our experts comment on reverse engineering herringbone gears and contact pattern optimization.

7 Ask the Expert - Bevel Gear Mounting (March/April 2012)

I am currently writing a design procedure for the correct method for setting up bevel gears in a gearbox for optimum performance...

8 Gear mesh, NVH Evaluation (June 2015)

The question is quite broad, as there are different methods for setting various types of gears and complexity of gear assemblies, but all gears have a few things in common.

9 How to Design and Install Bevel Gears for Optimum Performance - Lessons Learned (June/July 2013)

Bevel gears must be assembled in a specific way to ensure smooth running and optimum load distribution between gears. While it is certainly true that the "setting" or "laying out" of a pair of bevel gears is more complicated than laying out a pair of spur gears, it is also true that following the correct procedure can make the task much easier. You cannot install bevel gears in the same manner as spur and helical gears and expect them to behave and perform as well; to optimize the performance of any two bevel gears, the gears must be positioned together so that they run smoothly without binding and/or excessive backlash.

10 Balancing: Smoke and Mirrors No Longer (January/February 2013)

By virtue of collected anecdotal accounts, equations and problem solving, balancing is discussed as more math and common sense, and less smoke and mirrors.

11 Improving Gear Manufacturing Quality With Surface Texture Measurement (March/April 1993)

The working surfaces of gear teeth are often the result of several machining operations. The surface texture imparted by the manufacturing process affects many of the gear's functional characteristics. To ensure proper operation of the final assembly, a gear's surface texture characteristics, such as waviness and roughness, can be evaluated with modern metrology instruments.

12 Spur Gear Fundamentals (January/February 1989)

Gears are toothed wheels used primarily to transmit motion and power between rotating shafts. Gearing is an assembly of two or more gears. The most durable of all mechanical drives, gearing can transmit high power at efficiencies approaching 0.99 and with long service life. As precision machine elements gears must be designed.

13 ISO 9000: Global Market Salvation Or A Pig In A Poke (March/April 1994)

ISO 9000 is the latest hot topic in marketing and manufacturing circles. Everyone seems to be talking about it, but few seem to understand it completely. depending on whom one talks to, it's either the greatest thing to hit industry since the assembly line, another cash cow for slick consultants, a conspiracy on the part of Europeans to dominate global markets, or the next necessary step to compete in the global economy of the twenty-first century. It may be all of the above.

14 Less Energy Consumption with High-Efficiency Bevel Gears and their Usage in the U.S. (September/October 2014)

The efficiency of a gearbox is the output energy divided by the input energy. It depends on a variety of factors. If the complete gearbox assembly in its operating environment is observed, then the following efficiency influencing factors have to be considered

15 Calculation of Optimum Tooth Flank Corrections for Helical Gears (September/October 1988)

The load carrying behavior of gears is strongly influenced by local stress concentrations in the tooth root and by Hertzian pressure peaks in the tooth flanks produced by geometric deviations associated with manufacturing, assembly and deformation processes. The dynamic effects within the mesh are essentially determined by the engagement shock, the parametric excitation and also by the deviant tooth geometry.

16 Automated Inspection Systems: The Whole Picture (January/February 1998)

No one (not even you and I) consistently makes parts with perfect form and dimensions, so we must be able to efficiently check size and shape at many stages in the manufacturing and assembly process to eliminate scrap and rework and improve processes and profits. Automated inspection systems, which are widely used in all kinds of manufacturing operations, provide great efficiencies in checking individual features, but may not be as effective when asked to evaluate an entire part. You need to know why this is true and what you can do to improve your part yields.

17 Effects of Axle Deflection and Tooth Flank Modification on Hypoid Gear Stress Distribution and Contact Fatigue Life (August 2009)

As is well known in involute gearing, “perfect” involute gears never work perfectly in the real world. Flank modifications are often made to overcome the influences of errors coming from manufacturing and assembly processes as well as deflections of the system. The same discipline applies to hypoid gears.

18 The Design and Manufacture of Plastic Gears Part II (July/August 1985)

Advancements in machining and assembly techniques of thermoplastic gearing along with new design data has lead to increased useage of polymeric materials. information on state of the art methods in fabrication of plastic gearing is presented and the importance of a proper backlash allowance at installation is discussed. Under controlled conditions, cast nylon gears show 8-14 dBA. lower noise level than three other gear materials tested.

19 The Effect of Manufaturing Microgeometry Variations on the Load Distribution Factor and on Gear Contact and Root Stresses (July 2009)

Traditionally, gear rating procedures consider manufacturing accuracy in the application of the dynamic factor, but only indirectly through the load distribution are such errors in the calculation of stresses used in the durability and gear strength equations. This paper discusses how accuracy affects the calculation of stresses and then uses both statistical design of experiments and Monte Carlo simulation techniques to quantify the effects of different manufacturing and assembly errors on root and contact stresses.

20 Optimization through Customization (July 2009)

Many engineers and purchasing agents think it is more expensive to custom design a component or assembly these days when often customization can save on total costs.

21 Variation Analysis of Tooth Engagement and Load Sharing in Involute Splines (June 2010)

Involute spline couplings are used to transmit torque from a shaft to a gear hub or other rotating component. External gear teeth on the shaft engage an equal number of internal teeth in the hub. Because multiple teeth engage simultaneously, they can transmit much larger torques than a simple key and keyway assembly. However, manufacturing variations affect the clearance between each pair of mating teeth, resulting in only partial engagement.

22 Kinematic Analysis of Robotic Bevel-Gear Trains (November/December 1986)

In robot configurations it is desirable to be able to obtain an arbitrary orientation of the output element or end-effector. This implies a minimum of two independent rotations about two (generally perpendicular) intersecting axes. If, in addition, the out element performs a mechanical task such as in manufacturing or assembly (e.g., drilling, turning, boring, etc.) it may be necessary for the end-effector to rotate about its axis. If such a motion is to be realized with gearing, this necessitates a three-degree-of-freedom, three-dimensional gear train, which provides a mechanical drive of gyroscopic complexity; i.e., a drive with independently controlled inputs about three axes corresponding to azimuth, nutation, and spin.

News Items About assembly

1 The Gear Works Opens Test and Assembly Center (April 20, 2005)
The Gear Works-Seattle Inc. announced the opening of its new gearbox assembly and test center that has much increased the company’s ... Read News

2 EMAG Offers Heat Shrink Assembly Process (July 17, 2013)
The composite camshaft is still gaining ground in the marketplace. The main reason for this is the considerable weight reduction it bring... Read News