Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

bevel - Search Results

Related Buyers Guide Categories

Bevel Cutter Blade Sharpening
Bevel Gear Cutting Machines
Bevel Gear Cutting Tools & Blades
Bevel Gear Grinding Machines
Bevel Gear Lapping & Testing Machines
Cutter Bodies for Straight & Spiral Bevel Gears
Spiral & Straight Bevel Gear Generators
Spiral Bevel & Hypoid Testers
Straight Bevel Testers

Related Companies

All Metals & Forge Group, LLC
All Metals & Forge produces rings, flanges, gear blanks, single and double hubs, trunnions, bevel gear blanks, couplings, seamless rolled rings, rims, center hubs, sleeves, gear blanks, discs (pancake forgings), pinion shafts, step-downs, spindles, rack forgings in gear quality carbon and alloy steels with through-hardening, carburizing and bearing quality grades with forged-in steps to save on machining. Shafts are available up to 45-feet-long and 50,000 pounds and the company can produce part weights from under 100 pounds to more than 30 tons for the gear industry.

Forkardt
Gears extend across all industries. Forkardt, for many years, has provided workholding solutions to the gear industry. Applications we have designed workholding for in the gear industry are hard turning, grinding, and creation of pin plate for holding bevel gears

Gear Resource Technologies Inc.
Gear Resource Technologies, Inc. (GRT) has focused directly upon precision tooling needs of gear manufacturers, since 1997. We provide a highly-responsive engineering, analytical, and manufacturing resource, for the many specific tooling needs of the industry.

Gleason Cutting Tools Corporation
Wherever superior gear performance is needed -- from hand-held power tools to super tankers, from automobiles to aircraft -- Gleason Cutting Tools Corporation gear tools are at work, helping raise the standard of bevel and cylindrical gear manufacturing to levels unimaginable just a few years ago.

KISSsoft USA LLC
The KISSsoft calculation program has been developed to focus on the needs of mechanical engineers and power transmission profes

Klingelnberg AG
Klingelnberg is a world leader in the development, manufacture and sale of gear production machinery and related equipment.

R.E. Smith & Co.
Over 60 years experience in the gear industry. Over 20 years consulting experience in all types of industries. Over 140 different clients with applications from tiny camera gears to large hydro-electric plant drive gears. We have published numerous articles and technical papers in the area of gear metrology, noise, and transmission error (single flank composite) testing.

Tianjin No.1 Machine Tool Works
In China, Tianjin No.1 Machine Tool Works (TMTW), with a history of 54 years, is one of the large scale manufacturers for gear cutting machines.

American Gear Tools
Klingelnberg GmbH
Parker Industries Inc.

Related Power Transmission Categories

Bevel Gear Drives
Bevel Gear Manufacturing
Bevel Gears, Spiral and Hypoid
Bevel Gears, Straight
Helical-Bevel Gearboxes
Ring Gears-Bevel
Servo Reducers-Spiral Bevel
Spiral Bevel Gear Drives
Spiral Bevel Gears
Straight Bevel Gears

Related Power Transmission Companies

Arrow Gear Co.
Since its inception in 1947, Arrow Gear Company has continued to build a solid reputation for quality, service and reliability. From the very beginning, Arrow has provided high precision spur, helical and bevel gears that meet the rapidly changing and the demanding requirements of many industries.

B & R Machine and Gear Corp.
B & R Machine and Gear Corporation is a family owned and operated gear manufacturer since 1974. We are a custom gear facility, manufacturing gears to customer supplied blueprint specifications and/or samples.

Circle Gear & Machine Co.
Quality Custom Gearing Complete Machine Shop ? Reverse Engineering ? Breakdown Service Available

DieQua Corp.
Thanks for checking us out! Diequa is a manufacturer and supplier of a wide range of premium quality power transmission and motion control gear drive and connecting components designed specifically to enhance the performance of your machine designs. These include speed reducers, gearmotors, servo planetary reducers, spiral bevel gearboxes, shaft phasing gearboxes, shaft couplings, torque limiters, and screw jack lifting systems.

Gleason K2 Plastics
Gleason-K2 Plastics is in the business of plastic gear design and injection molding precision plastic components with a focus on precision plastic gears. Our lights-out automation enables production of the most cost effective, custom molded gears (spur gears, helical gears, bevel gears, planetary gears, internal gears), pulleys, bushings, rotary air motor rotors and vanes, along with plastic nozzle assemblies, at unmatched quality levels

Hangzhou Xingda Machinery Co. Ltd.
ounded in 1984, Hangzhou xingda machinery co.,ltd specialized in the development, manufacture and sales of machanic products. The factory has more than 33000 square meters workshop, and with more than 100 sets of advanced process machines and test equipments. Our main produces SPEED REDUCER E-RV worm speed reducer,passed the ISO 9001, are sold to more than hundreds of cities all over the world,both at home and abroad, in area of food industries, Kitchen word machinery, printing machinery, woodworking machinery, small textile machinery, rubber machinery, small chemical machinery, plastic machinery etc.

Lafert North America
Your best source for metric motors, gearboxes and coolant pumps, by providing quality products with the highest level of service in the industry.

Midwest Gear & Tool, Inc.
With more than 20 years in gear manufacturing, Midwest Gear & Tool has an elaborate straight and spiral bevel gear manufacturing capability. We also manufacture a complete line of hydraulic, electric and manual transmissions and reducers. We m...

Ronson Gears Pty. Ltd.
Established in 1954 Ronson Gears, is your English speaking and English thinking Asia-Pacific alternative for Precision Gears and Gear Assemblies. Doing business internationally for almost 60 years, Ronson Gears has garnered a reputation for quality, delivery and first-class customer service.

Rush Gears Inc.
Manufacturer of Custom and Standard Industrial Gears. Inch and Metric Gears. Steel Gears, Plastic Gears and Stainless Steel Gears. Spur Gears, Helical Gears, Worm & Worm Gears, Gear Rack, Gear Stock & Pinions, Geared Shafts, Splines & Spline Shaft...

Taiwan Precision Gear Corp.
TPG is one professional factory who manufactures all kinds motors, gear box, PMDC motor, drive, clutch, brake, coupling, vibration motor, variable speed drive, disco, right angle worm gear, other power transmission parts.

ZZN Transmission Plant
The ZZN Transmission Plant has over 30 years of experience in manufacturing powertrain components. Its production facilities and highly qualified staff guarantee the world’s top quality products. Numerically controlled machines, machining centers, electron beam vacuum welding center and modern heat treatment equipment enable the manufacture of high quality products.

Articles About bevel


1 Design Guidelines for High-Capacity Bevel Gear Systems (January/February 1992)

The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum. A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form: Integrated gear/shaft/bearing systems Effects of rim thickness on gear tooth stresses Resonant response

2 Repair of High-Value, High-Demand Spiral Bevel Gears by Superfinishing (October 2012)

Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UH–60 helicopter tail rotor drivetrain. As spiral bevel gears for the UH–60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.

3 Pressure Angle Changes in the Transverse Plane for Circular Cut Spiral Bevel Gears (September/October 1986)

Recently it has been suggested that the transverse plane may be very useful in studying the kinematics and dynamics of spiral bevel gears. The transverse plane is perpendicular to the pitch and axial planes as shown in Fig. 1. Buckingham has suggested that a spiral bevel gear may be viewed as a limited form of a "stepped" straight-tooth gear as in Fig. 2. The transverse plane is customarily used in the study of straight toothed bevel gears.

4 Calculation of Tooth Root Load Carrying Capacity of Beveloid Gears (June 2014)

In this paper, two developed methods of tooth root load carrying capacity calculations for beveloid gears with parallel axes are presented, in part utilizing WZL software GearGenerator and ZaKo3D. One method calculates the tooth root load-carrying capacity in an FE-based approach. For the other, analytic formulas are employed to calculate the tooth root load-carrying capacity of beveloid gears. To conclude, both methods are applied to a test gear. The methods are compared both to each other and to other tests on beveloid gears with parallel axes in test bench trials.

5 Maximum Life Spiral Bevel Reduction Design (September/October 1993)

Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ration under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque and power. Significant parameters in the design are the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near-optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.

6 Precision Forged Spiral Bevel Gears (August/September 1984)

A recent U.S. Army Tank-Automotive Command project, conducted by Battelle's Columbus Laboratories. successfully developed the methodology of CAD/CAM procedures for manufacturing dies (via EDM) for forging spiral bevel gears. Further, it demonstrated that precision forging of spiral bevel gears is a practical production technique. Although no detailed economic evaluation was made in this study, it is expected that precision forging offers an attractive alternative to the costly gear cutting operations for producing spiral bevel gears.

7 How to Design and Install Bevel Gears for Optimum Performance - Lessons Learned (June/July 2013)

Bevel gears must be assembled in a specific way to ensure smooth running and optimum load distribution between gears. While it is certainly true that the "setting" or "laying out" of a pair of bevel gears is more complicated than laying out a pair of spur gears, it is also true that following the correct procedure can make the task much easier. You cannot install bevel gears in the same manner as spur and helical gears and expect them to behave and perform as well; to optimize the performance of any two bevel gears, the gears must be positioned together so that they run smoothly without binding and/or excessive backlash.

8 Synthesis of Spiral Bevel Gears (March/April 1991)

There are different types of spiral bevel gears, based on the methods of generation of gear-tooth surfaces. A few notable ones are the Gleason's gearing, the Klingelnberg's Palloid System, and the Klingelnberg's and Oerlikon's Cyclo Palliod System. The design of each type of spiral bevel gear depends on the method of generation used. It is based on specified and detailed directions which have been worked out by the mentioned companies. However, there are some general aspects, such as the concepts of pitch cones, generating gear, and conditions of force transmissions that are common for all types of spiral bevel gears.

9 Manufacturing Method of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System Using Multi-Axis Control and Multi-Tasking Machine Tool (August 2011)

In this article, the authors calculated the numerical coordinates on the tooth surfaces of spiral bevel gears and then modeled the tooth profiles using a 3-D CAD system. They then manufactured the large-sized spiral bevel gears based on a CAM process using multi-axis control and multi-tasking machine tooling. The real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected using the measured coordinates. Moreover, the gears were meshed with each other and the tooth contact patterns were investigated. As a result, the validity of this manufacturing method was confirmed.

10 Tooth Root Stresses of Spiral Bevel Gears (May/June 1988)

Service performance and load carrying capacity of bevel gears strongly depend on the size and position of the contact pattern. To provide an optimal contact pattern even under load, the gear design has to consider the relative displacements caused by deflections or thermal expansions expected under service conditions. That means that more or less lengthwise and heightwise crowning has to be applied on the bevel gear teeth.

11 Transmission Errors and Bearing Contact of Spur, Helical, and Spiral Bevel Gears (July/August 1990)

An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.

12 The Next Step in Bevel Gear Metrology (January/February 1996)

In recent years, gear inspection requirements have changed considerably, but inspection methods have barely kept pace. The gap is especially noticeable in bevel gears, whose geometry has always made testing them a complicated, expensive and time-consuming process. Present roll test methods for determining flank form and quality of gear sets are hardly applicable to bevel gears at all, and the time, expense and sophistication required for coordinate measurement has limited its use to gear development, with only sampling occurring during production.

13 Zerol Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part III (November/December 2010)

Zerol bevel gears are the special case of spiral bevel gears with a spiral angle of 0°. They are manufactured in a single-indexing face milling process with large cutter diameters, an extra deep tooth profile and tapered tooth depth.

14 CNC Technology and the System-Independent Manufacture of Spiral Bevel Gears (September/October 1992)

CNC technology offers new opportunities for the manufacture of bevel gears. While traditionally the purchase of a specific machine at the same time determined a particular production system, CNC technology permits the processing of bevel gears using a wide variety of methods. The ideological dispute between "tapered tooth or parallel depth tooth" and "single indexing or continuous indexing" no longer leads to an irreversible fundamental decision. The systems have instead become penetrable, and with existing CNC machines, it is possible to select this or that system according to factual considerations at a later date.

15 Bevel Gear Manufacturing Troubleshooting (March/April 1991)

The quality of gearing is a function of many factors ranging from design, manufacturing processes, machine capability, gear steel material, the machine operator, and the quality control methods employed. This article discusses many of the bevel gear manufacturing problems encountered by gear manufacturers and some of the troubleshooting techniques used.

16 Technological Fundamentals of CBN Bevel Gear Finish Grinding (November/December 1985)

The bevel gear grinding process, with conventional wheels, has been limited to applications where the highest level of quality is required.

17 Cutting Low-Pich-Angle Bevel Gears; Worm Gears & The Oil Entry Gap (July/August 1992)

Question: Do machines exist that are capable of cutting bevel gear teeth on a gear of the following specifications: 14 teeth, 1" circular pitch, 14.5 degrees pressure angle, 4 degrees pitch cone angle, 27.5" cone distance, and an 2.5" face width?

18 Fundamentals of Bevel Gear Hard Cutting (November/December 1990)

Some years back, most spiral bevel gear sets were produced as cut, case hardened, and lapped. The case hardening process most frequently used was and is case carburizing. Many large gears were flame hardened, nitrided, or through hardened (hardness around 300 BHN) using medium carbon alloy steels, such as 4140, to avoid higher distortions related to the carburizing and hardening process.

19 Evaluation of a Low-Noise, Formate Spiral Bevel Gear Set (January/February 2008)

Studies to evaluate low-noise Formate spiral bevel gears were performed. Experimental tests were conducted on a helicopter transmission test stand...

20 A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral-Bevel Gears (March/April 1986)

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

21 Bevel Gear Development and Testing Procedure (July/August 1986)

The most conclusive test of bevel and hypoid gears is their operation under normal running conditions in their final mountings. Testing not only maintains quality and uniformity during manufacture, but also determines if the gears will be satisfactory for their intended applications.

22 Influence of Relative Displacements Between Pinion and Gear on Tooth Root Stresses of Spiral Bevel Gears (July/August 1985)

The manufacturing quality of spiral bevel gears has achieved a very high standard. Nevertheless, the understanding of the real stress conditions and the influences. of certain parameters is not satisfactory.

23 Bevel Gears: Optimal High Speed Cutting (August 2007)

This article presents a summary of all factors that contribute to efficient and economical high-speed cutting of bevel and hypoid gears.

24 Tooth Contact Shift in Loaded Spiral Bevel Gears (November/December 1992)

An analytical method is presented to predict the shifts of the contact ellipses on spiral bevel gear teeth under load. The contact ellipse shift is the motion of the point to its location under load. The shifts are due to the elastic motions of the gear and pinion supporting shafts and bearings. The calculations include the elastic deflections of the gear shafts and the deflections of the four shaft bearings. The method assumes that the surface curvature of each tooth is constant near the unloaded pitch point. Results from these calculations will help designers reduce transmission weight without seriously reducing transmission performance.

25 Spiral Bevel and Hypoid Gear Cutting Technology Update (July 2007)

Spiral bevel and hypoid gear cutting has changed significantly over the years. The machines, tools, processes and coatings have steadily advanced.

26 Measuring Backlash in Bevel and Hypoid Gears (June 2014)

In this installment of Ask the Expert, Dr. Stadtfeld describes the best methods for measuring backlash in bevel gears.

27 Importance of Contact Pattern in Assembly of Bevel vs Cylindrical Gears (August 2014)

Why is there so much emphasis on the tooth contact pattern for bevel gears in the assembled condition and not so for cylindrical gears, etc?

28 New Methods for the Calculation of the Load Capacity of Bevel and Hypoid Gears (June/July 2013)

Flank breakage is common in a number of cylindrical and bevel gear applications. This paper introduces a relevant, physically based calculation method to evaluate flank breakage risk vs. pitting risk. Verification of this new method through testing is demonstrably shown.

29 Producing Large-Sized, Skew Bevel Gear Pinion Using Multi-Axis Control and Multi-Tasking Machine Tool (March/April 2013)

This paper proposes a method for the manufacture of a replacement pinion for an existing, large-sized skew bevel gear using multi-axis control and multitasking machine tool.

30 Grinding Bevel Gears on Cylindrical Gear Grinding Machines (January/February 1994)

Power train designs which employ gears with cone angles of approximately 2 degrees to 5 degrees have become quite common. It is difficult, if not impossible, to grind these gears on conventional bevel gear grinding machines. Cylindrical gear grinding machines are better suited for this task. This article will provide an overview of this option and briefly introduce four grinding variation possibilities.

31 Meshing of a Spiral Bevel Gear Set With 3-D Finite Element Analysis (March/April 1997)

Recent advances in spiral bevel gear geometry and finite element technology make it practical to conduct a structural analysis and analytically roll the gear set through mesh. With the advent of user-specific programming linked to 3-D solid modelers and mesh generators, model generation has become greatly automated. Contact algorithms available in general purpose finite element codes eliminate the need for the use and alignment of gap elements. Once the gear set it placed in mesh, user subroutines attached to the FE code easily roll it through mesh. The method is described in detail. Preliminary result for a gear set segment showing the progression of the contact line load is given as the gears roll through mesh.

32 Ask the Expert - Bevel Gear Mounting (March/April 2012)

I am currently writing a design procedure for the correct method for setting up bevel gears in a gearbox for optimum performance...

33 CNC Bevel Gear Generators and Flared Cup Gear Grinding (July/August 1993)

New freedom of motion available with CNC generators make possible improving tooth contact on bevel and hypoid gears. Mechanical machines by their nature are inflexible and require a special mechanism for every desired motion. These mechanisms are generally exotic and expensive. As a result, it was not until the introduction of CNC generators that engineers started exploring motion possibilities and their effect on tooth contact.

34 New Approaches in Roll Testing Technology of Spiral Bevel and Hypoid Gear Sets (May/June 2005)

This paper presents a new approach in roll testing technology of spiral bevel and hypoid gear sets on a CNC roll tester applying analytical tools, such as vibration noise and single-flank testing technology.

35 Guidelines for Modern Bevel Gear Grinding (August 2008)

This paper acknowledges the wide variety of manufacturing processes--especially in grinding--utlized in the production of bevel gears...

36 Drive Line Analysis for Tooth Contact Optimization of High-Power Spiral Bevel Gears (June/July 2011)

In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.

37 Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions (November/December 2005)

Conical involute gears (beveloids) are used in transmissions with intersecting or skewed axes and for backlash-free transmissions with parallel axes.

38 Straight Bevel Gears (September/October 2010)

Tribology Aspects in Angular Transmission Systems, Part 2

39 Refurbishing a Ball Mill ; Bevel Gear Backlash (September 2012)

Our experts comment on reverse engineering herringbone gears and contact pattern optimization.

40 The New Freedoms: Bevel Blades (September/October 2007)

Today, because of reduced cost of coatings and quicker turnaround times, the idea of all-around coating on three-face-sharpened blades is again economically viable, allowing manufacturers greater freedoms in cutting blade parameters, including three-face-sharpened and even four-face-sharpened blades.

41 What to Know About Bevel Gear Grinding (September/October 2005)

Guidelines are insurance against mistakes in the often detailed work of gear manufacturing. Gear engineers, after all, can't know all the steps for all the processes used in their factories.

42 Gear Tip Chamfer and Gear Noise; Surface Measurement of Spiral Bevel Gear Teeth (July/August 1993)

Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?

43 GPSys Critical to Spiral Bevel Gear Life (September/October 2008)

Impact Technologies considers commercial version of software package.

44 Kinematical Simulation of Face Hobbing Indexing and Tooth Surface Generation of Spiral Bevel and Hypoid Gears (January/February 2006)

In addition to the face milling system, the face hobbing process has been developed and widely employed by the gear industry. However, the mechanism of the face hobbing process is not well known.

45 Shorter Cycle Times for Carburizing (March/April 2006)

Dana Corp. is developing a process that carburizes a straight bevel gear to a carbon content of 0.8% in 60 fewer minutes than atmosphere carburizing did with an identical straight bevel.

46 Tool Life and Productivity Improvement Through Cutting Parameter Setting and Tool Design in Dry High-Speed Bevel Gear Tooth Cutting (May/June 2006)

This article presents some of the findings of cutting investigations at WZL in which the correlation of cutting parameters, cutting materials, tool geometry and tool life have been determined.

47 Beveloid & Hypoloid Gears (May 2011)

Beveloids are helical gears with nonparallel shafts, with shaft angles generally between 5 degrees and 15 degrees. This is part VI in the Tribology Aspects in Angular Transmission Systems Series

48 Spiral Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part IV (January/February 2011)

This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

49 Dry Cutting of Bevel and Hypoid Gears (May/June 1998)

High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.

50 Kinematic Analysis of Robotic Bevel-Gear Trains (November/December 1986)

In robot configurations it is desirable to be able to obtain an arbitrary orientation of the output element or end-effector. This implies a minimum of two independent rotations about two (generally perpendicular) intersecting axes. If, in addition, the out element performs a mechanical task such as in manufacturing or assembly (e.g., drilling, turning, boring, etc.) it may be necessary for the end-effector to rotate about its axis. If such a motion is to be realized with gearing, this necessitates a three-degree-of-freedom, three-dimensional gear train, which provides a mechanical drive of gyroscopic complexity; i.e., a drive with independently controlled inputs about three axes corresponding to azimuth, nutation, and spin.

51 Differential Gears (October 2012)

What are the manufacturing methods used to make bevel gears used in automotive differentials?

52 Hypoid Gears: Tribology Aspects in Angular Transmission Systems, Part VII (June/July 2011)

Hypoid gears are the paragon of gearing. To establish line contact between the pitches in hypoid gears, the kinematically correct pitch surfaces have to be determined based on the axoids. In cylindrical and bevel gears, the axoids are identical to the pitch surfaces and their diameter or cone angle can be calculated simply by using the knowledge about number of teeth and module or ratio and shaft angle. In hypoid gears, a rather complex approach is required to find the location of the teeth—even before any information about flank form can be considered. This article is part seven of an eight-part series on the tribology aspects of angular gear drives.

53 The Kinematics of Conical Involute Gear Hobbing (July 2008)

Conical involute gears, also known as beveloid gears, are generalized involute gears that have the two flanks of the same tooth characterized by different base cylinder radii and different base helix angles.

54 Reinventing Cutting Tool Production at Gleason (May 2013)

Investment in advanced new manufacturing technologies is helping to reinvent production processes for bevel gear cutters and coarse-pitch hobs at Gleason - delivering significant benefits downstream to customers seeking shorter deliveries, longer tool life and better results.

55 New Developments in TCA and Loaded TCA (May 2007)

How the latest techniques and software enable faster spiral bevel and hypoid design and development.

56 Analyzing Gear Tooth Stress as a Function of Tooth Contact Pattern Shape and Position (January/February 1985)

The development of a new gear strength computer program based upon the finite element method, provides a better way to calculate stresses in bevel and hypoid gear teeth. The program incorporates tooth surface geometry and axle deflection data to establish a direct relationship between fillet bending stress, subsurface shear stress, and applied gear torque. Using existing software links to other gear analysis programs allows the gear engineer to evaluate the strength performance of existing and new gear designs as a function of tooth contact pattern shape, position and axle deflection characteristics. This approach provides a better understanding of how gears react under load to subtle changes in the appearance of the no load tooth contact pattern.

57 Setting Load Parameters for Viable Fatigue Testing of Gears in Powertrain Axles Part I: Single-Reduction Axles (August 2014)

This presentation introduces a new procedure that - derived from exact calculations - aids in determining the parameters of the validation testing of spiral bevel and hypoid gears in single-reduction axles.

58 Good Basic Design or Sophisticated Flank Optimizations - Each at the Right Time (January/February 2005)

More strength, less noise. Those are two major demands on gears, including bevel and hypoid gears.

59 Engineering Constants (May/June 1987)

Rules and Formula for worm gears, bevel gears and strength of gear teeth.

60 Hypoloid Gear with Small Shaft Angles and Zero-to-Large Offsets (November/December 2009)

Beveloid gears are used to accommodate a small shaft angle. The manufacturing technology used for beveloid gearing is a special setup of cylindrical gear cutting and grinding machines. A new development, the so-called Hypoloid gearing, addresses the desire of gear manufacturers for more freedoms. Hypoloid gear sets can realize shaft angles between zero and 20° and at the same time, allow a second shaft angle (or an offset) in space that provides the freedom to connect two points in space.

61 Gleason Cutter Head Improves Tool Life and Productivity (November/December 2009)

The Pentac Plus is the latest generation of Gleason’s Pentac bevel gear cutting system. It is designed to allow much higher tool life and improved productivity, especially for cutters using multiple face blade geometry.

62 The Road Leads Straight to Hypoflex (March/April 2010)

A new method for cutting straight bevel gears.

63 A Split Happened on the Way to Reliable, Higher-Volume Gear Grinding (September/October 2005)

Bevel gear manufacturers live in one of two camps: the face hobbing/lapping camp, and the face milling/grinding camp.

64 Optimal Modifications of Gear Tooth Surfaces (March/April 2011)

In this paper a new method for the introduction of optimal modifications into gear tooth surfaces—based on the optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.

65 Assembling Spiral Gears: Double Taper Can Be Double Trouble (January/February 2006)

Bevel gear systems are particularly sensitive to improper assembly. Slight errors in gear positioning can turn a well-designed, quality manufactured gear set into a noisy, prone-to-failure weak link in your application.

66 Gear Milling on Non-Gear Dedicated Machinery (July 2009)

Imagine the flexibility of having one machine capable of milling, turning, tapping and gear cutting with deburring included for hard and soft material. No, you’re not in gear fantasy land. The technology to manufacture gears on non gear-dedicated, mult-axis machines has existed for a few years in Europe, but has not yet ventured into mainstream manufacturing. Deckel Maho Pfronten, a member of the Gildemeister Group, took the sales plunge this year, making the technology available on most of its 2009 machines.

67 Gears for Nonparallel Shafts (September/October 1986)

Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.

68 Reliable and Efficient Skiving (September 2011)

Klingelnberg's new tool and machine concept allow for precise production.

69 Tribology Aspects in Angular Transmission Systems, Part 1 (August 2010)

"General Explanations on Theoretical Bevel Gear Analysis" is part 1 of an eight-part series from Gleason's Dr. Hermann Stadtfeld.

70 New Checker Scan-Measures Stick Blades with Ruby-Tipped Probes (May/June 2006)

This month, German automakers will receive the first three units of Klingelnberg's new automated blade checker designed for the shop floor.

71 Lapping and Superfinishing Effects on Surface Finish of Hypoid Gears and Transmission Errors (September/October 2008)

This presentation is an expansion of a previous study (Ref.1) by the authors on lapping effects on surface finish and transmission errors. It documents the effects of the superfinishing process on hypoid gears, surface finish and transmission errors.

72 Worm Gear Measurement (September/October 1997)

Several articles have appeared in this publication in recent years dealing with the principles and ways in which the inspection of gears can be carried out, but these have dealt chiefly with spur, helical and bevel gearing, whereas worm gearing, while sharing certain common features, also requires an emphasis in certain areas that cause it to stand apart. For example, while worm gears transmit motion between nonparallel shafts, as do bevel and hypoid gears, they usually incorporate much higher ratios and are used in applications for which bevel would not be considered, including drives for rotary and indexing tables in machine tools, where close tolerance of positioning and backlash elimination are critical, and in situations where accuracy of pitch and profile are necessary for uniform transmission at speed, such as elevators, turbine governor drives and speed increasers, where worm gears can operate at up to 24,000 rpm.

73 What "Ease-Off" shows about Bevel and Hypoid Gears (September/October 2001)

The configuration of flank corrections on bevel gears is subject to relatively narrow restrictions. As far as the gear set is concerned, the requirement is for the greatest possible contact zone to minimize flank compression. However, sufficient reserves in tooth depth and longitudinal direction for tooth contact displacement should be present. From the machine - and particularly from the tool - point of view, there are restrictions as to the type and magnitude of crowning that can be realized. Crowning is a circular correction. Different kinds of crowning are distinguished by their direction. Length crowning, for example, is a circular (or 2nd order) material removal, starting at a reference point and extending in tooth length or face width.

74 Local 3-D Flank Form Optimizations for Bevel Gears (September/October 2003)

Optimizing the running behavior of bevel and hypoid gears means improving both noise behavior and load carrying capacity. Since load deflections change the relative position of pinion and ring gear, the position of the contact pattern will depend on the torque. Different contact positions require local 3-D flank form optimizations for improving a gear set.

75 Spiral Bevel Gear Development: Elminiating Trial and Erroe with Computer Technology (January/February 2003)

Computer technology has touched all areas of our lives, impacting how we obtain airline tickets, purchase merchandise and receive medical advice. This transformation has had a vast influence on manufacturing as well, providing process improvements that lead to higher quality and lower costs. However, in the case of the gear industry, the critical process of tooth contact pattern development for spiral bevel gears remains relatively unchanged.

76 A Modular Approach to Computing Spiral Bevel Gears and Curvic Couplings (May/June 2000)

In general, bevel gears and curvic couplings are completely different elements. Bevel gears rotate on nonintersecting axis with a ratio based on the number of teeth. Curvic couplings work like a clutch (Fig. 1).

77 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

78 Curvic Coupling Design (November/December 1986)

Curvic Couplings were first introduced in 1942 to meet the need for permanent couplings and releasing couplings (clutches), requiring extreme accuracy and maximum load carrying capacity, together with a fast rate of production. The development of the Curvic Coupling stems directly from the manufacture of Zerol and spiral bevel gears since it is made on basically similar machines and also uses similar production methods. The Curvic Coupling can therefore lay claim to the same production advantages and high precision associated with bevel gears.

79 Design Formulas for Evaluating Contact Stress in Generalized Gear Pairs (May/June 2001)

A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).

80 Water Powered Machinery (January/February 2001)

In one of my many visits to northern New York state, which included the St. Lawrence River (Thousand Islands Region) and the Adirondack Mountains, I visited Croghan, a village on the Beaver River, which is fed by the Stillwater Resevoir in the Adirondack Mountains. At the base of a dam within the village, I found the remnants of a water turbine and a bevel gear drive system. Having worked for The Gleason Works for many years, I was intrigued by the remains of the bevel gears, which appeared to have had wooden teeth at one time.

81 Arrow Gear: Spiral Bevel Specialist (July/August 2003)

James J. Cervinka and Frank E. Pielsticker must've known the future when they named their new business Arrow Gear Co. in 1947. They started out to manufacture gears for hand tools and machine tools, but their business has taken off since then.

82 Failures of Bevel-Helical Gear Units on Traveling Bridge Cranes (November/December 2000)

Bridge cranes are among the most useful machines in many branches of modern industry. Using standard hooks or other specialized clamping devices, they can lift, transport, discharge, and stack a variety of loads.

83 The Two-Sided-Ground Bevel Cutting Tool (May/June 2003)

In the past, the blades of universal face hobbing cutters had to be resharpened on three faces. Those three faces formed the active part of the blade. In face hobbing, the effective cutting direction changes dramatically with respect to the shank of the blade. Depending on the individual ratio, it was found that optimal conditions for the chip removal action (side rake, side relief and hook angle) could just be established by adjusting all major parameters independently. This, in turn, results automatically in the need for the grinding or resharpening of the front face and the two relief surfaces in order to control side rake, hook angle and the relief and the relief angles of the cutting and clearance side.

84 Appendices--Spiral Bevel and Hypoid Gear Cutting Technology Update (July 2007)

85 The Basics of Spiral Bevel Gears (January/February 2001)

This article also appears as Chapter 1 in the Gleason Corporation publication "Advanced Bevel Gear Technology." Gearing Principles in Cylindrical and Straight Bevel Gears The purpose of gears is to transmit motion and torque from one shaft to another. That transmission normally has to occur with a constant ratio, the lowest possible disturbances and the highest possible efficiency. Tooth profile, length and shape are derived from those requirements.

86 Evaluation of Carburized & Ground Face Gears (September/October 2000)

Designers are constantly searching for ways to reduce rotocraft drive system weight. Reduced weight can increase the payload, performance, or power density of current and future systems. One example of helicopter transmission weight reduction was initiated as part of the United States Army Advanced Rotocraft Transmission program. This example used a split-torque, face-gear configuration concept (Ref. 1). compared to a conventional design with spiral-bevel gears, the split-torque, face-gear design showed substantial weight savings benefits. Also, the use of face gears allows a wide-range of possible configurations with technical and economic benefits (Ref. 2).

87 Face Gears: An Interesting Alternative for Special Applications - Calculation, Production and Use (September/October 2001)

Crown gearings are not a new type of gear system. On the contrary, they have been in use since very early times for various tasks. Their earliest form is that of the driving sprocket, found in ancient Roman watermills or Dutch windmills. The first principles of gear geometry and simple methods of production (shaper cutting) were developed in the 1940s. In the 1950s, however, crown gears' importance declined. Their tasks were, for example, taken over by bevel gears, which were easier to manufacture and could transmit greater power. Current subject literature accordingly contains very little information on crown gears, directed mainly to pointing out their limitations (Ref. 1).

88 A Bicycle with Real Gears (May/June 2003)

The Addendum team was in Chicago in early March, for the National Manufacturing Week show, when it saw something unusual: a bicycle with gears. Real gears, Spiral bevel gears, in fact.

89 Powder Metal Gear Design and Inspection (September/October 1996)

Powder metallurgy (P/M) is a precision metal forming technology for the manufacture of parts to net or near-net shape, and it is particularly well-suited to the production of gears. Spur, bevel and helical gears all may be made by made by powder metallurgy processing.

90 Super-Reduction Hypoid Gears (August 2011)

Super-reduction hypoid gears (SRH) are bevel worm gears with certain differences regarding hypoid gears. If two axes are positioned in space and the task is to transmit motion and torque between them using some kind of gears with a ratio above 5 and even higher than 50, the following cases are commonly known. Tribology Aspects in Angular Transmission Systems, Part VIII.

91 Software Suite Serves Full Range of Gear Analysis (July 2008)

New software from AGMA helps gear designers calculate geometry and ratings for all types of bevel gears.

92 Flank Breakage on Gears for Energy Systems (November/December 2011)

Gear flank breakage can be observed on edge zone-hardened gears. It occurs, for example, on bevel gears for water turbines, on spur gears for wind energy converters and on single- and double-helical gears for other industrial applications.

93 High Speed Steel: Different Grades for Different Requirements (September/October 2004)

Hobs, broaches, shaper cutters, shaver cutters, milling cutters, and bevel cutters used in the manufacture of gears are commonly made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.

94 Cylkro Gears: An Alternative in Mechanical Power Transmission (May/June 1996)

Bevel gears have been the standard for several decades in situations where power transmission has to occur between shafts mounted at a given angle. Now a new approach has been developed that challenges the bevel gear's de facto monopoly in such applications. The concept is based on the principle of the crown gear; i.e., a cylindrical pinion mates with a face gear. Crown Gear B.V. in Enschede, Holland, is the developer of these specialty gear teeth, which are marketed under the trade name Cylkro.

95 Face Gears: Geometry and Strength (January/February 2007)

There are three distinct gear types in angle drives. The most commonly used are bevel and worm drives. Face gear drives are the third alternative.

News Items About bevel

1 Bonfiglioli Updates Parallel Shaft Series and Bevel-Helical Series Gearboxes (May 31, 2007)
Bonfiglioli recently presented five new sizes in the HDP parallel-shaft series and HDO bevel helical series that was first introduced in ... Read News

2 Rockwell Automation Dodge Reliance Introduces New Helical/Bevel Speed Reducer (April 6, 2006)
The new Dodge motorized Torque-Arm II (MTA) from Rockwell Automation is a high efficiency, case carburized helical/bevel speed reducer. T... Read News

3 New Series of Bevel Gear Operators from Flowserve (January 6, 2005)
The Limitorque Actuation System MT Series of bevel gear opeators from Flowserve are optimized to perform in power industry valve applicat... Read News

4 Zeitlauf’s Angular Gearing Offers Worm Gear Drive/Bevel Spur Gear Alternative (June 21, 2007)
The EtaCrown concept from Zeitlauf offers an energy-efficient alternative to worm gear drives and bevel spur gears.According to the compa... Read News

5 Bevel Gear Cutter Slashes Production Time (March 8, 2010)
The Phoenix 280C Bevel Gear Cutting Machine from Gleason reduces cycle times by up to 35 percent for bevel gears and pinions up to 280 mm... Read News

6 Gleason Broadens Line of Bevel Gear Solutions (April 29, 2010)
Gleason Corporation recently announced that it has broadened its line of bevel gear manufacturing solutions with a new line of high perfo... Read News

7 Dry Cutting System Manufactures Straight Bevels (April 9, 2010)
Gleason Corporation introduced Coniflex Plus, a high-speed dry cutting tool system for manufacturing straight bevel gears. According to G... Read News

8 Klingelnberg Releases Bevel Gear Machines Guidebook (March 4, 2014)
The new work in the "Die Bibliothek der Technik" (Library of technology) series from publisher Süddeutscher Verlag onpact ... Read News

9 Dontyne Offers Spiral Bevel Gear Design Tools (April 14, 2014)
Dontyne Systems Gear Production Suite (GPS) Bevel Gear Module is not intended to replace Gleason and Klingelnberg designs for all applications... Read News

10 Mitsui Seiki Machines Cut Spiral Bevels (August 19, 2009)
Several customers of Mitsui Seiki USA have reported success cutting 10-14 class ring gears in low- to mid-volume applications, such as fo... Read News