Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

capacity - Search Results

Related Companies

ECM Technologies started manufacturing heat-treatment furnaces in 1928. Since that time, ECM personnel have always been completely committed to extending their knowledge in the field of temperature control, high pressures, vacuum and the behavior of materials. This expertise, on an industrial scale, has always been enriched by our close partnership with furnace users, engineers, heat treat engineers and developers. Today, our knowledge base is at the core of all our customers' production lines. It is this concern for caring and listening, combined with our passion for our profession, which has forged ECM Technology and ECM USA’s recognized spirit of innovation.

Presrite Corporation
Presrite manufactures net and near-net forgings for a wide range of industries in countries around the world. Its parts are used in the transmissions, engines and undercarriages of track-type tractors, excavators, wheel loaders and other off-highway vehicles. Presrite institutes an internal program designed to increase performance and quality levels while better controlling costs. Called ?6 SIGMA,? the program involves setting goals, collecting data, and then measuring and analyzing the results.

Solar Atmospheres
Solar Atmospheres specializes in vacuum heat treating, vacuum nitriding, vacuum brazing as well as vacuum carburizing services. With processing expertise and personalized service, Solar will process your small or large parts efficiently with our unique range of 40 vacuum furnaces. Sizes range from lab furnaces to the world's largest commercial vacuum furnace.

Roto-Flo / U.S. Gear Tools
U.S. Gear Tools

Related Power Transmission Companies

NSK Corporation
NSK is a global manufacture of bearings and other motion & control products. It operates 51 manufacturing facilities worldwide and 12 global technology centers of excellence that draw from world-leading industry knowledge and manufacturing experience. NSK's dedication to engineering innovation results in state-of-the-art products designed to improve performance and extend service life. NSK's unique Asset Improvement Program helps customers improve productivity and efficiency to significantly reduce operating costs. The company’s industry and process-specific expertise and solutions are applied to identify and solve problems that are limiting productivity. This enables customers to achieve improved performance, enhanced competitiveness and increased profitability.

Articles About capacity

1 Calculation of Tooth Root Load Carrying Capacity of Beveloid Gears (June 2014)

In this paper, two developed methods of tooth root load carrying capacity calculations for beveloid gears with parallel axes are presented, in part utilizing WZL software GearGenerator and ZaKo3D. One method calculates the tooth root load-carrying capacity in an FE-based approach. For the other, analytic formulas are employed to calculate the tooth root load-carrying capacity of beveloid gears. To conclude, both methods are applied to a test gear. The methods are compared both to each other and to other tests on beveloid gears with parallel axes in test bench trials.

2 CBN Gear Grinding - A Way to Higher Load Capacity (November/December 1993)

Because of the better thermal conductivity of CBN abrasives compared to that of conventional aluminum oxide wheels, CBN grinding process, which induces residual compressive stresses into the component, and possibly improves the subsequent stress behavior. This thesis is the subject of much discussion. In particular, recent Japanese publications claim great advantages for the process with regard to an increased component load capacity, but do not provide further details regarding the technology, test procedures or components investigated. This situation needs clarification, and for the this reason the effect of the CBN grinding material on the wear behavior and tooth face load capacity of continuously generated ground gears was further investigated.

3 Scoring Load Capacity of Gears Lubricated with EP-Oils (October/November 1984)

The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.

4 Size and Material Influence on the Tooth Root, Pitting, Scuffing and Wear Load-Carrying Capacity of Fine-Module Gears (September 2011)

In this study, limiting values for the load-carrying-capacity of fine-module gears within the module range 0.3–1.0 mm were determined and evaluated by comprehensive, experimental investigations that employed technical, manufacturing and material influence parameters.

5 FZG Rig-Based Testing of Flank Load-Carrying Capacity Internal Gears (June/July 2012)

Micropitting, pitting and wear are typical gear failure modes that can occur on the flanks of slowly operated and highly stressed internal gears. However, the calculation methods for the flank load-carrying capacity have mainly been established on the basis of experimental investigations of external gears. This paper describes the design and functionality of the newly developed test rigs for internal gears and shows basic results of the theoretical studies. It furthermore presents basic examples of experimental test results.

6 Comparative Load Capacity Evaluation of CBN-Finished Gears (May/June 1990)

Cubic boron nitride (CBN) finishing of carburized gearing has been shown to have certain economic and geometric advantages and, as a result, it has been applied to a wide variety of precision gears in many different applications. In critical applications such as aerospace drive systems, however, any new process must be carefully evaluated before it is used in a production application. Because of the advantages associated with this process, a test program was instituted to evaluate the load capacity of aerospace-quality gears finished by the CBN process as compared to geometrically identical gears finished by conventional grinding processes. This article presents a brief description of the CBN process, its advantages in an aerospace application, and the results of an extensive test program conducted by Boeing Helicopters (BH) aimed at an evaluation of the effects of this process on the scoring, surface durability, and bending fatigue properties of spur gears. In addition, the results of an x-ray diffraction study to determine the surface and subsurface residual stress distributions of both shot-peened and nonshot-peened CBN-ground gears as compared to similar conventionally ground gears are also presented.

7 Flank Load Carrying Capacity and Power Loss Reduction by Minimized Lubrication (May 2011)

The objective of this study was to investigate the limits concerning possible reduction of lubricant quantity in gears that could be tolerated without detrimental effects on their load carrying capacity.

8 Influence of Grinding Burn on Pitting Capacity (August 2008)

This paper intends to determine the load-carrying capacity of thermally damaged parts under rolling stress. Since inspection using real gears is problematic, rollers are chosen as an acceptable substitute. The examined scope of thermal damage from hard finishing extends from undamaged, best-case parts to a rehardening zone as the worst case. Also, two degrees of a tempered zone have been examined.

9 Generating Interchangeable 20-Degree Spur Gear Sets with Circular Fillets to Increase Load Carrying Capacity (July/August 2006)

This article presents a new spur gear 20-degree design that works interchangeably with the standard 20-degree system and achieves increased tooth bending strength and hence load carrying capacity.

10 Load Carrying Capacity of Screw Helical Gears with Steel Pinions and Plastic Wheels (July/August 2004)

There is an increasing significance of screw helical and worm gears that combine use of steel and plastics. This is shown by diverse and continuously rising use in the automotive and household appliance industries. The increasing requirements for such gears can be explained by the advantageous qualities of such a material combination in comparison with that of the traditional steel/bronze pairing.

11 Surface Damage Caused by Gear Profile Grinding and its Effects on Flank Load Carrying Capacity (September/October 2004)

Instances of damage to discontinuous form ground and surface-hardened gears, especially of large scale, have recently increased. This may be attributed partly to a faulty grinding process with negative effects on the surface zones and the surface properties.

12 Improvement in Load Capacity of Crossed Helical Gears (January/February 1987)

Crossed helical gear sets are used to transmit power and motion between non-intersecting and non-parallel axes. Both of the gears that mesh with each other are involute helical gears, and a point contact is made between them. They can stand a small change in the center distance and the shaft angle without any impairment in the accuracy of transmitting motion.

13 Pitting Load Capacity of Helical Gears (May 2008)

Influences of Load Distribution and Tooth Flank Modifications as Considered in a New, DIN/ISO-Compatible Calculation Method

14 New Methods for the Calculation of the Load Capacity of Bevel and Hypoid Gears (June/July 2013)

Flank breakage is common in a number of cylindrical and bevel gear applications. This paper introduces a relevant, physically based calculation method to evaluate flank breakage risk vs. pitting risk. Verification of this new method through testing is demonstrably shown.

15 Nonstandard Tooth Proportions (June 2007)

With the right selection of nonstandard center distance and tool shifting, it may be possible to use standard tools to improve the gear set capacity with a considerable reduction in cost when compared to the use of special tools.

16 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part I (March/April 1987)

The load capacity rating of gears had its beginning in the 18th century at Leiden University when Prof. Pieter van Musschenbroek systematically tested the wooden teeth of windmill gears, applying the bending strength formula published by Galilei one century earlier. In the next centuries several scientists improved or extended the formula, and recently a Draft International Standard could be presented.

17 Design Guidelines for High-Capacity Bevel Gear Systems (January/February 1992)

The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum. A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form: Integrated gear/shaft/bearing systems Effects of rim thickness on gear tooth stresses Resonant response

18 The Effect of Manufaturing Microgeometry Variations on the Load Distribution Factor and on Gear Contact and Root Stresses (July 2009)

Traditionally, gear rating procedures consider manufacturing accuracy in the application of the dynamic factor, but only indirectly through the load distribution are such errors in the calculation of stresses used in the durability and gear strength equations. This paper discusses how accuracy affects the calculation of stresses and then uses both statistical design of experiments and Monte Carlo simulation techniques to quantify the effects of different manufacturing and assembly errors on root and contact stresses.

19 Influence of Relative Displacements Between Pinion and Gear on Tooth Root Stresses of Spiral Bevel Gears (July/August 1985)

The manufacturing quality of spiral bevel gears has achieved a very high standard. Nevertheless, the understanding of the real stress conditions and the influences. of certain parameters is not satisfactory.

20 Comparing Standards (September/October 1998)

One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.

21 Optimizing Plastic Gear Geometry: An Inroduction to Gear Optimization (May/June 2002)

There are numerous engineering evaluations required to design gear sets for optimum performance with regard to torque capacity, noise, size and cost. How much cost savings and added gear performance is available through optimization? Cost savings of 10% to 30% and 100% added capacity are not unusual. The contrast is more pronounced if the original design was prone to failure and not fit for function.

22 Single Flank Measuring; Estimating Horsepower Capacity (September/October 1991)

Question: What is functional measurement and what is the best method for getting truthful answers?

23 The Capacity of Superfinished Vehicle Components to Increase Fuel Economy, Part I (January/February 2009)

This paper will present data from both laboratory and field testing demonstrating that superfinished components exhibit lower friction, operating temperature, wear and/ or higher horsepower, all of which translate directly into increased fuel economy.

24 Computer-Aided Finite Capacity Scheduling of a FLEAN Machining Cell (October 2013)

A look at some of the software options available to help with lean scheduling in a job shop

25 Increaed Load Capacity of Worm Gears by Optimizing the Worm Wheel Bronze (May/June 2002)

The lifetime of worm gears is usually delimited by the bronze-cast worm wheels. The following presents some optimized cast bronzes, which lead to a doubling of wear resistance.

26 Case Depth and Load Capacity of Case-Carburized Gears (March/April 2002)

Compared to non-heat-treated components, case-carburized gears are characterized by a modified strength profile in the case-hardened layer. The design of case-carburized gears is based on defined allowable stress numbers. These allowable stress numbers are valid only for a defined "optimum" case depth. Adequate heat treatment and optimum case depth guarantee maximum strength of tooth flank and tooth root.

27 Calculating Spur and Helical Gear Capacity with ISO 6336 (November/December 1998)

This is the third article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are htose of the author as an individual. They do not represent the opinions of any organization of which he is a member.

28 Properties of Tooth Surfaces due to Gear Honing with Electroplated Tools (November/December 2001)

In recent years, the demands for load capacity and fatigue life of gears constantly increased while weight and volume had to be reduced. To achieve those aims, most of today's gear wheels are heat treated so tooth surfaces will have high wear resistance. As a consequence of heat treatment, distortion unavoidably occurs. With the high geometrical accuracy and quality required for gears, a hard machining process is needed that generates favorable properties on the tooth surfaces and the near-surface material with high reliability.

29 Eyes on Detroit (July/August 2001)

If you think of Gear Expo as only a machine tool show, you're not seeing all of its potential. You may be tempted to skip it this year, especially if you're struggling to fill your current capacity. I've heard too many stories of canceled orders, falling profits and slashed budgets to believe that great numbers of you will be attending Gear Expo with buying new machines as your No. 1 priority.

30 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

31 Controlling Carburizing for Top Quality Gears (March/April 1993)

A carburized alloy steel gear has the greatest load-carrying capacity, but only if it is heat treated properly. For high quality carburizing, the case depth, case microstructure, and case hardness must be controlled carefully.

32 Doing It Right & Faster... The Computer's Impact on Gear Design & Manufacture (May/June 1992)

The availability of technical software has grown rapidly in the last few years because of the proliferation of personal computers. It is rare to find an organization doing technical work that does not have some type of computer. For gear designers and manufacturers, proper use of the computer can mean the difference between meeting the competition or falling behind in today's business world. The right answers the first time are essential if cost-effective design and fabrication are to be realized. The computer is capable of optimizing a design by methods that are too laborious to undertake using hard calculations. As speeds continue to climb and more power per pound is required from gear systems, it no longer is possible to design "on the safe side" by using larger service factors. At high rotational speeds a larger gear set may well have less capacity because of dynamic effects. The gear engineer of today must consider the entire gear box or even the entire rotating system as his or her domain.

33 Reverse Engineering of Pure Involute Cylindrical Gears Using Conventional Measurement Tools (January/February 2000)

Designing a gear set implies a considerable effort in the determination of the geometry that fulfills the requirements of load capacity, reliability, durability, size, etc. When the objective is to design a new set of gears, there are many alternatives for the design, and the designer has the freedom to choose among them. Reverse engineering implies an even bigger challenge to the designer, because the problem involves already manufactured gears whose geometry is generally unknown. In this case, the designer needs to know the exact geometry of the actual gears in order to have a reference for the design.

34 Parallel Axis Gear Grinding: Theory & Application (November/December 2000)

The goal of gear drive design is to transit power and motion with constant angular velocity. Current trends in gear drive design require greater load carrying capacity and increased service life in smaller, quieter, more efficient gearboxes. Generally, these goals are met by specifying more accurate gears. This, combined with the availability of user-friendly CNC gear grinding equipment, has increased the use of ground gears.

35 Large Scores and Radial Cracks on Case-Hardened Worms (May/June 2003)

In the last couple of years, many research projects dealt with the determination of load limits of cylindrical worm gears. These projects primarily focused on the load capacity of the worm wheel, whereas the worm was neglected. This contribution presents investigations regarding damages such as large scores and cracks on the flanks of case-hardened worms.

36 Gear Ratio Epicyclic Drives Analysis (June 2014)

It has been documented that epicyclic gear stages provide high load capacity and compactness to gear drives. This paper will focus on analysis and design of epicyclic gear arrangements that provide extremely high gear ratios. Indeed, a special, two-stage planetary arrangement may utilize a gear ratio of over one hundred thousand to one. This paper presents an analysis of such uncommon gear drive arrangements and defines their major parameters, limitations, and gear ratio maximization approaches. It also demonstrates numerical examples, existing designs, and potential applications.

37 Hard Finishing and Fine Finishing Part 1 (September/October 1989)

Profitable hard machining of tooth flanks in mass production has now become possible thanks to a number of newly developed production methods. As used so far, the advantages of hard machining over green shaving or rolling are the elaborately modified tooth flanks are produced with a scatter of close manufacturing tolerances. Apart from an increase of load capacity, the chief aim is to solve the complex problem of reducing the noise generation by load-conditioned kinematic modifications of the tooth mesh. In Part II, we shall deal with operating sequences and machining results and with gear noise problems.

38 Design and Optimization of Planetary Gears Considering All Relevant Influences (November/December 2013)

Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.

39 Turbine Gearbox Inspection - Steady Work in a Shaky Wind Market (August 2013)

Having outlasted the worldwide Great Recession, the Global Wind Energy Council (GWEC) forecasts a constant growth in wind energy, i.e.: "increase in worldwide capacity to 460,000 MW by 2015."

40 Performance of Skiving Hobs in Finishing Induction Hardened and Carburized Gears (May/June 2003)

In order to increase the load carrying capacity of hardened gears, the distortion of gear teeth caused by quenching must be removed by precision cutting (skiving) and/or grinding. In the case of large gears with large modules, skiving by a carbide hob is more economical than grinding when the highest accuracy is not required.

41 Local 3-D Flank Form Optimizations for Bevel Gears (September/October 2003)

Optimizing the running behavior of bevel and hypoid gears means improving both noise behavior and load carrying capacity. Since load deflections change the relative position of pinion and ring gear, the position of the contact pattern will depend on the torque. Different contact positions require local 3-D flank form optimizations for improving a gear set.

42 Determination and Optimization of the Contact Pattern of Worm Gears (March/April 2003)

The load capacity of worm gears is mainly influenced by the size and the position of the contact pattern.

43 The Effect of Superfinishing on Gear Micropitting (March/April 2009)

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

44 High Accurate Hobbing with Specially Designed Finishing Hobs (November/December 2003)

Load-carrying capacity of gears, especially the surface durability, is influenced by their tooth surface roughness in addition to their tooth profiles and tooth traces.

45 Tooth Fillet Profile Optimization for Gears with Symmetric and Asymmetric Teeth (September/October 2009)

The gear tooth fillet is an area of maximum bending stress concentration. However, its profile is typically less specified in the gear drawing and hardly controlled during gear inspection in comparison with the gear tooth flanks. This paper presents a fillet profile optimization technique for gears with symmetric and asymmetric teeth based on FEA and a random search method. It allows achieving substantial bending stress reduction in comparison with traditionally designed gears. This bending stress reduction can be traded for higher load capacity, longer lifetime, lower noise and vibration and cost reduction.

46 Systematic Investigations on the Influence of Case Depth on the Pitting and Bending Strength of Case Carburized Gears (July/August 2005)

The gear designer needs to know how to determine an appropriate case depth for a gear application in order to guarantee the required load capacity.

47 Influence of Coatings and Surface Improvements on the Lifetime of Gears (July/August 2004)

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.

48 Industry Forum (July/August 1985)

In response to Ed Uberts letter, we have come a long way in gearing since WWII. The Europeans do use long addendum pinions in many cases. This modification does improve load capacity, sliding conditions and the working life of a gearset. When modifying a pinion tooth it is necessary to modify the gear tooth or adjust the center distance accordingly but we will leave that to the designers.

49 Low Loss Gears (June 2007)

In most transmission systems, one of the main power loss sources is the loaded gear mesh. In this article, the influences of gear geometry parameters on gear efficiency, load capacity, and excitation are shown.

50 Experience with Large, High-Speed Load Gears (July 2007)

The main theme of this article is high-capacity, high-speed load gears in a power transmission range between 35 MW and 100 MW for generators and turbo-compressors driven by gas or steam turbines.

51 A New Method of Desinging Worm Gears (July/August 1989)

The first part of this article describes the analytical design method developed by the author to evaluate the load capacity of worm gears. The second part gives a short description of the experimental program and testing resources being used at CETIM to check the basic assumptions of the analytical method; and to determine on gears and test wheels the surface pressure endurance limits of materials that can be used for worm gears. The end of the article compares the results yielded by direct application of the method and test results.

52 The Anatomy of a Micropitting-Induced Tooth Fracture Failure (June 2010)

Micropitting has become a major concern in certain classes of industrial gear applications, especially wind power and other relatively highly loaded, somewhat slow-speed applications, where carburized gears are used to facilitate maximum load capacity in a compact package. While by itself the appearance of micropitting does not generally cause much perturbation in the overall operation of a gear system, the ultimate consequences of a micropitting failure can, and frequently are, much more catastrophic.

53 A Logical Procedure To Determine Initial Gear Size (November/December 1986)

When a gear set is to be designed for a new application, the minimum size gears with the required capacity are desired. These gears must be capable of meeting the power, speed, ratio, life, and reliability requirements.

54 Tooth Root Stresses of Spiral Bevel Gears (May/June 1988)

Service performance and load carrying capacity of bevel gears strongly depend on the size and position of the contact pattern. To provide an optimal contact pattern even under load, the gear design has to consider the relative displacements caused by deflections or thermal expansions expected under service conditions. That means that more or less lengthwise and heightwise crowning has to be applied on the bevel gear teeth.

55 Measurement of Directly Designed Gears with Symmetric and Asymmetric Teeth (January/February 2011)

In comparison with the traditional gear design approach based on preselected, typically standard generating rack parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear measurement methodology. This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical, external and internal gears with symmetric and asymmetric teeth.

56 Curvic Coupling Design (November/December 1986)

Curvic Couplings were first introduced in 1942 to meet the need for permanent couplings and releasing couplings (clutches), requiring extreme accuracy and maximum load carrying capacity, together with a fast rate of production. The development of the Curvic Coupling stems directly from the manufacture of Zerol and spiral bevel gears since it is made on basically similar machines and also uses similar production methods. The Curvic Coupling can therefore lay claim to the same production advantages and high precision associated with bevel gears.

57 The Process of Gear Shaving (January/February 1986)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity. The process can also improve tooth surface finish and eliminate, by crowned tooth forms, the danger of tooth end load concentrations in service. Shaving provides for form modifications that reduce gear noise. These modifications can also increase the gear's load carrying capacity, its factor of safety and its service life.

58 Effect of MoS2 Films on Scoring Resistance of Gears (July/August 1986)

Gears are currently run at high speed and under high load. It is a significant problem to develop lubricants and gears with high load-carrying capacity against scoring. The particles of molybdenum disulfide have been considered to increase the scoring resistance of the gears. The wear characteristics and the scoring resistance of the gears lubricated with MoS2 paste and MoS2 powder have been investigated. (1) However, there are few investigations on the performance of the gears coated with MoS2 film with respect to scoring.

59 Cutting Edge Grinders Are Great - But How's Your Workholding (March/April 2009)

Capacity is key today, and the best way to ensure that you are squeezing every dime out of that new machine is to complement it with innovative workholding.

60 Introduction to ISO 6336 What Gear Manufacturers Need to Know (July/August 1998)

ISO 6336 Calculation of Load Capacity of Spur and Helical Gears was published in 1997 after 50 years of effort by an international committee of experts whose work spanned three generations of gear technology development. It was a difficult compromise between the existing national standards to get a single standard published which will be the basis for future work. Many of the compromises added complication to the 1987 edition of DIN 3990, which was the basic document.

News Items About capacity

1 Koepfer's Heavy Duty Hobbing Machine Offers Extended Part Size Capacity (June 6, 2007)
The Heavy-duty Model 300 from Koepfer America provides for a bigger part diameter, coarser diametral pitch, and bigger hob capacity than ... Read News

2 Honing System Offers Increased Part Capacity (April 19, 2011)
The new all-electric HTA hone from Sunnen brings increased part capacity and stroker torque to applications such as bore resurfacing of h... Read News

3 Ultra Grind Offers Two Meter Grinding Capacity (July 31, 2012)
The Hardinge Grinding Group introduces a new 2-meter capacity, UltraGrind 2000 grinding machine manufactured by Jones & Shipman, a Ke... Read News

4 Advanced Heat Treat Installing $1.5 Million Large Capacity Ion Nitriding Vessel (January 4, 2007)
Advanced Heat Treat Corp. is installing one of the world's largest ion nitriding vessels in their new Cullman, AL service center, cur... Read News

5 Toyota Raises Transmission Production Capacity in Poland (April 14, 2006)
Toyota Motor Corp. announced that Toyota Motor Manufacturing Poland Sp.zo.o, a producer of transmissions and engines, will increase its ... Read News

6 Chimera Expands Mold Production Capacity (April 14, 2006)
Chimera Co., a precision mold parts designer and manufacturer in Tokyo, Japan, plans to expand its finished mold product plants. Accor... Read News

7 Samputensil Introduces High Capacity Grinding Machine (January 6, 2006)
The new 250G generating grinding machine from Samputensili, introduced at EMO 2005 was developed to achieve a shorter cycle time. Acco... Read News

8 Modultherm Expands Capacity (April 3, 2009)
ALD and ALD-Holcroft Vacuum Technologies introduced a larger size of the ModulTherm vacuum heat treating system. The ModulTherm can now p... Read News

9 Micro Precision Gear Technology Increases Machine Capacity (November 28, 2011)
Micro Precision Gear Technology of Hemel Hempstead is bucking the current trend of a flat market for U.K. manufacturing and increasing ca... Read News

10 Brelie Gear Expands Capacity, Invests in Machinery (October 11, 2010)
Brelie Gear Co, Inc. recently announced the acquisition of a new Mitsubishi GE-20 CNC Gear Hobbing Machine.  According to company Pr... Read News

11 Pit Furnace Line Addition Doubles Plant's Capacity (June 8, 2009)
Elterma S.A. commissioned two electrical PEGat-1000/18x30 pit furnaces and a G-4000-ET atmosphere generator for a Spanish manufacturer of... Read News

12 Gleason Installs 10 Meter Capacity Gear Hobber in China (April 2, 2013)
Gleason Corporation recently announced the successful installation of a P 8000/10000 Gear Hobber at Changzhou Tianshan Heavy Industry Mac... Read News

13 Koepfer America Launches Large Capacity CNC Hob Sharpening Machine (August 7, 2007)
Koepfer America developed the new KFS250 CNC hob sharpening machine, which is  based on its KFS100 series.  The KFS250 series h... Read News