crown shaving - Search Results

Articles About crown shaving


Articles are sorted by RELEVANCE. Sort by Date.

1 Our Experts Discuss Hobbing Ridges, Crooked Gear Teeth, and Crown Shaving (March/April 1992)

Question: When cutting worm gears with multiple lead stock hobs we find the surface is "ridged". What can be done to eliminate this appearance or is to unavoidable?

2 Gear Shaving Basics, Part I (November/December 1997)

Gear shaving is a free cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity.

3 Gear Shaving Basics, Part II (January/February 1998)

In our last issue, we covered the basic principles of gear shaving and preparation of parts for shaving. In this issue, we will cover shaving methods, design principles and cutter mounting techniques.

4 The Process of Gear Shaving (January/February 1986)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity. The process can also improve tooth surface finish and eliminate, by crowned tooth forms, the danger of tooth end load concentrations in service. Shaving provides for form modifications that reduce gear noise. These modifications can also increase the gear's load carrying capacity, its factor of safety and its service life.

5 Gear Finishing by Shaving, Rolling and Honing, Part I (March/April 1992)

There are several methods available for improving the quality of spur and helical gears following the standard roughing operations of hobbing or shaping. Rotary gear shaving and roll-finishing are done in the green or soft state prior to heat treating.

6 Gear Shaving - Process Simulation Helps to Comprehend an Incomprehensible Process (September/October 2006)

Due to its economical efficiency, the gear shaving process is a widely used process for soft finishing of gears. A simulation technique allows optimization of the process.

7 Sicmat Releases Raso 200 Dynamic Shaving Machine (November/December 2011)

The Raso 200 Dynamic has been developed to offer all the characteristics of a gear shaving machine with a competitive price.

8 Gear Finishing by Shaving, Rolling and Honing, Part II (May/June 1992)

Part I of this series focused on gear shaving, while Part II focuses on gear finishing by rolling and honing.

9 The Process of Gear Shaving (May/June 1984)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity.

10 Viewpoint (March/April 1998)

Jules Kish responds to comments about his article on finding a hunting ratio, and Dr. Sante Basili argues that shaving is still the best way to finish a rough-cut gear.

11 Gear Shaving Basics - Part I (November/December 1997)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.

12 Machine Marks on Gear Flanks (May 2014)

What causes shaving cutter marks on gear flanks and can they be prevented?

13 Computerized Recycling of Used Gear Shaver Cutters (May/June 1993)

Most gear cutting shops have shelves full of expensive tooling used in the past for cutting gears which are no longer in production. It is anticipated that these cutters will be used again in the future. While this may take place if the cutters are "standard," and the gears to be cut are "standard," most of the design work done today involves high pressure angle gears for strength, or designs for high contact ratio to reduce noise. The re-use of a cutter under these conditions requires a tedious mathematical analysis, which is no problem if a computer with the right software is available. This article describes a computerized graphical display which provides a quick analysis of the potential for the re-use of shaving cutters stored in a computer file.

14 Deburring & Finishing Gears with Power Brushes (March/April 1989)

Why Brushes? In this age of hi-tech, robots, automatic machines, machining cells, etc., is there a niche somewhere for power brushes? Let me answer by asking another question. What tool does the gear manufacturer have in his arsenal that allows him to deburr green gears, hardened gears, hobbed gears, ground gears and shaved gears? What tool allows him to deburr powder metal gears - green and sintered - brass gears, bronze gears, stainless gears made of exotic materials such as inconel, waspaloy, or hastaloy, and fiber and plastic gears? How about spur gears, helical gears, sprockets, both internal and external splines, clutch teeth and pump gears?

15 Generating and Checking Involute Gear Teeth (May/June 1986)

It has previously been demonstrated that one gear of an interchangeable series will rotate with another gear of the same series with proper tooth action. It is, therefore, evident that a tooth curve driven in unison with a mating blank, will "generate" in the latter the proper tooth curve to mesh with itself.

16 Gear Manufacturing Methods - Forming the Teeth (January/February 1987)

The forming of gear teeth has traditionally been a time-consuming heavy stock removal operation in which close tooth size, shape, runout and spacing accuracy are required. This is true whether the teeth are finished by a second forming operation or a shaving operation.

17 Gleason's Genesis 130SV Gear Shaving Machine (May/June 2006)

The 130SV shaving machine from Gleason is the newest of the company's Genesis family of gear production equipment.

18 Leading the Way in Lead Crown Correction and Inspection (August 2013)

Forest City Gear applies advanced gear shaping and inspection technologies to help solve difficult lead crown correction challenges half a world away. But these solutions can also benefit customers much closer to home, the company says. Here's how…

19 Crowning Techniques in Aerospace Actuation Gearing (August 2010)

One of the most effective methods in solving the edge loading problem due to excess misalignment and deflection in aerospace actuation gearing is to localize tooth-bearing contact by crowning the teeth. Irrespective of the applied load, if the misalignment and/or deflection are large enough to cause the contact area to reduce to zero, the stress becomes large enough to cause failure. The edge loading could cause the teeth to break or pit, but too much crowning may also cause the teeth to pit due to concentrated loading. In this paper, a proposed method to localize the contact bearing area and calculate the contact stress with crowning is presented and demonstrated on some real-life examples in aerospace actuation systems.

20 Cylkro Face Gears (November/December 2010)

Dutch design and Swiss ingenuity cause transmission breakthrough. Updated examples of Cylkro face gears in action.

21 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

22 Crowning: A Cheap Fix for Noise and Misalignment Problems (March/April 2010)

Fred Young, CEO of Forest City Gear, talks about sophisticated gear manufacturing methods and how they can help solve common gear-related problems.

23 An Investigation of the Influence of Shaft Misalignment on Bending Stresses of Helical Gears with Lead Crown (November/December 2008)

In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.

24 How Are You Dealing with the Bias Error in Your Helical Gears (May 2009)

This paper initially defines bias error—the “twisted tooth phenomenon.” Using illustrations, we explain that bias error is a by-product of applying conventional, radial crowning methods to produced crowned leads on helical gears. The methods considered are gears that are finished, shaped, shaved, form and generated ground. The paper explains why bias error occurs in these methods and offers techniques used to limit/eliminate bias error. Sometimes, there may be a possibility to apply two methods to eliminate bias error. In those cases, the pros/cons of these methods will be reviewed.

25 Drive Line Analysis for Tooth Contact Optimization of High-Power Spiral Bevel Gears (June/July 2011)

In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.

26 Crowning: A Cheap Fix for Noise Reduction and Misalignment Problems and Applications (March/April 1987)

Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gear boxes transmitting more power at higher rpms and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise without increasing costs.

27 Cylkro Gears: An Alternative in Mechanical Power Transmission (May/June 1996)

Bevel gears have been the standard for several decades in situations where power transmission has to occur between shafts mounted at a given angle. Now a new approach has been developed that challenges the bevel gear's de facto monopoly in such applications. The concept is based on the principle of the crown gear; i.e., a cylindrical pinion mates with a face gear. Crown Gear B.V. in Enschede, Holland, is the developer of these specialty gear teeth, which are marketed under the trade name Cylkro.

28 What "Ease-Off" shows about Bevel and Hypoid Gears (September/October 2001)

The configuration of flank corrections on bevel gears is subject to relatively narrow restrictions. As far as the gear set is concerned, the requirement is for the greatest possible contact zone to minimize flank compression. However, sufficient reserves in tooth depth and longitudinal direction for tooth contact displacement should be present. From the machine - and particularly from the tool - point of view, there are restrictions as to the type and magnitude of crowning that can be realized. Crowning is a circular correction. Different kinds of crowning are distinguished by their direction. Length crowning, for example, is a circular (or 2nd order) material removal, starting at a reference point and extending in tooth length or face width.

29 Determining Spline Misalignment Capabilities (November/December 1995)

Introducing backlash into spline couplings has been common practice in order to provide for component eccentric and angular misalignment. The method presented here is believed to be exact for splines with even numbers of teeth and approximate for those with odd numbers of teeth. This method is based on the reduction of the maximum effective tooth thickness to achieve the necessary clearance. Other methods, such as tooth crowning, are also effective.

30 Crowned Spur Gears: Optimal Geometry and Generation (September/October 1988)

Involute spur gears are very sensitive to gear misalignment. Misalignment will cause the shift of the bearing contact toward the edge of the gear tooth surfaces and transmission errors that increase gear noise. Many efforts have been made to improve the bearing contact of misaligned spur gears by crowning the pinion tooth surface. Wildhaber(1) had proposed various methods of crowning that can be achieved in the process of gear generation. Maag engineers have used crowning for making longitudinal corrections (Fig. 1a); modifying involute tooth profile uniformly across the face width (Fig. 1b); combining these two functions in Fig. 1c and performing topological modification (Fig. 1d) that can provide any deviation of the crowned tooth surface from a regular involute surface. (2)

31 Longitudinal Load Distribution Factor for Straddle- and Overhang-Mounted Spur Gears (July/August 1987)

A pair of spur gears generally has an effective lead error which is caused, not only by manufacturing and assembling errors, but also by the deformations of shafts, bearings and housings due to the transmitted load. The longitudinal load distribution on a contact line of the teeth of the gears is not uniform because of the effective lead error.

32 Tooth Root Stresses of Spiral Bevel Gears (May/June 1988)

Service performance and load carrying capacity of bevel gears strongly depend on the size and position of the contact pattern. To provide an optimal contact pattern even under load, the gear design has to consider the relative displacements caused by deflections or thermal expansions expected under service conditions. That means that more or less lengthwise and heightwise crowning has to be applied on the bevel gear teeth.

33 Face Gears: An Interesting Alternative for Special Applications - Calculation, Production and Use (September/October 2001)

Crown gearings are not a new type of gear system. On the contrary, they have been in use since very early times for various tasks. Their earliest form is that of the driving sprocket, found in ancient Roman watermills or Dutch windmills. The first principles of gear geometry and simple methods of production (shaper cutting) were developed in the 1940s. In the 1950s, however, crown gears' importance declined. Their tasks were, for example, taken over by bevel gears, which were easier to manufacture and could transmit greater power. Current subject literature accordingly contains very little information on crown gears, directed mainly to pointing out their limitations (Ref. 1).