Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

defects - Search Results

Related Companies

Stresstech Oy
Stresstech provides products and services for process control and quality inspection of gears, camshafts,crankshafts, bearings, valves, etc. Applications for monitoring various manufacturing processes, such as grinding, super finishing, shot peening, heat treatment, case depth after case hardening, etc. Turnkey solutions, instruments and measurement services based on Barkhausen Noise (BN), X-ray Diffraction (XRD) and hole-drilling for studying residual stresses, retained austenite contents, grinding burns, heat treat defects, and hardness changes, welding stresses, etc. Applications for the automotive, machine and aerospace industries.

Articles About defects

Articles are sorted by RELEVANCE. Sort by Date.

1 Evaluation of Bending Strength of Carburized Gears (May/June 2004)

The aim of our research is to clearly show the influence of defects on the bending fatigue strength of gear teeth. Carburized gears have many types of defects, such as non-martensitic layers, inclusions, tool marks, etc. It is well known that high strength gear teeth break from defects in their materials, so itís important to know which defect limits the strength of a gear.

2 The Effect of Material Defects on Gear Perfomance - A Case Study (March/April 2000)

The quality of the material used for highly loaded critical gears is of primary importance in the achievement of their full potential. Unfortunately, the role which material defects play is not clearly understood by many gear designers. The mechanism by which failures occur due to material defects is often circuitous and not readily apparent. In general, however, failures associated with material defects show characteristics that point to the source of the underlying problem, the mechanism by which the failure initiated, and the manner in which it progressed to failure of the component.

3 Minimizing Backlash in Spur Gears (May/June 1994)

simplified equations for backlash and roll test center distance are derived. Unknown errors in measured tooth thickness are investigate. Master gear design is outlined, and an alternative to the master gear method is described. Defects in the test radius method are enumerated. Procedures for calculating backlash and for preventing significant errors in measurement are presented.