Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

face gears - Search Results

Related Companies

KISSsoft USA LLC
The KISSsoft calculation program has been developed to focus on the needs of mechanical engineers and power transmission profes

Universal Technical Systems

Related Power Transmission Categories

Face Gears

Articles About face gears


1 Cylkro Face Gears (November/December 2010)

Dutch design and Swiss ingenuity cause transmission breakthrough. Updated examples of Cylkro face gears in action.

2 Face Gears: Geometry and Strength (January/February 2007)

There are three distinct gear types in angle drives. The most commonly used are bevel and worm drives. Face gear drives are the third alternative.

3 Tribology Aspects in Angular Transmission Systems, Part V: Face Gears (March/April 2011)

This article is part five of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

4 Cylkro Gears: An Alternative in Mechanical Power Transmission (May/June 1996)

Bevel gears have been the standard for several decades in situations where power transmission has to occur between shafts mounted at a given angle. Now a new approach has been developed that challenges the bevel gear's de facto monopoly in such applications. The concept is based on the principle of the crown gear; i.e., a cylindrical pinion mates with a face gear. Crown Gear B.V. in Enschede, Holland, is the developer of these specialty gear teeth, which are marketed under the trade name Cylkro.

5 Evaluation of Carburized & Ground Face Gears (September/October 2000)

Designers are constantly searching for ways to reduce rotocraft drive system weight. Reduced weight can increase the payload, performance, or power density of current and future systems. One example of helicopter transmission weight reduction was initiated as part of the United States Army Advanced Rotocraft Transmission program. This example used a split-torque, face-gear configuration concept (Ref. 1). compared to a conventional design with spiral-bevel gears, the split-torque, face-gear design showed substantial weight savings benefits. Also, the use of face gears allows a wide-range of possible configurations with technical and economic benefits (Ref. 2).

6 Face Gears: An Interesting Alternative for Special Applications - Calculation, Production and Use (September/October 2001)

Crown gearings are not a new type of gear system. On the contrary, they have been in use since very early times for various tasks. Their earliest form is that of the driving sprocket, found in ancient Roman watermills or Dutch windmills. The first principles of gear geometry and simple methods of production (shaper cutting) were developed in the 1940s. In the 1950s, however, crown gears' importance declined. Their tasks were, for example, taken over by bevel gears, which were easier to manufacture and could transmit greater power. Current subject literature accordingly contains very little information on crown gears, directed mainly to pointing out their limitations (Ref. 1).

7 Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage (November/December 2010)

A study was performed to evaluate fault detection effectiveness as applied to gear-tooth pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study.

8 Shaper Cutters-Design & Applications Part 1 (March/April 1990)

Gear shaping is one of the most popular production choices in gear manufacturing. While the gear shaping process is really the most versatile of all the gear manufacturing methods and can cut a wide variety of gears, certain types of gears can only be cut by this process. These are gears closely adjacent to shoulders; gears adjacent to other gears, such as on countershafts; internal gears, either open or blind ended; crown or face gears; herringbone gears of the solid configuration of with a small center groove; rack; parts with filled-in spaces or teeth, such as are used in some clutches.

9 Basic Honing & Advanced Free-Form Honing (July/August 1997)

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

10 Gear Tip Chamfer and Gear Noise; Surface Measurement of Spiral Bevel Gear Teeth (July/August 1993)

Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?

11 Improving Gear Manufacturing Quality With Surface Texture Measurement (March/April 1993)

The working surfaces of gear teeth are often the result of several machining operations. The surface texture imparted by the manufacturing process affects many of the gear's functional characteristics. To ensure proper operation of the final assembly, a gear's surface texture characteristics, such as waviness and roughness, can be evaluated with modern metrology instruments.

12 Obtaining Meaningful Surface Roughness Measurements on Gear Teeth (July/August 1997)

Surface roughness measuring of gear teeth can be a very frustrating experience. Measuring results often do not correlate with any functional characteristic, and many users think that they need not bother measuring surface roughness, since the teeth are burnished in operation. They mistakenly believe that the roughness disappears in a short amount of time. This is a myth! The surface indeed is shiny, but it still has considerable roughness. In fact, tests indicate that burnishing only reduces the initial roughness by approximately 25%.

13 Setting Load Parameters for Viable Fatigue Testing of Gears in Powertrain Axles Part I: Single-Reduction Axles (August 2014)

This presentation introduces a new procedure that - derived from exact calculations - aids in determining the parameters of the validation testing of spiral bevel and hypoid gears in single-reduction axles.

14 Surface Fatigue Life on CBN and Vitreous Ground Carburized and Hardened AISA 9310 Spur Gears (January/February 1990)

Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

15 Application and Improvement of Face Load Factor Determination Based on AGMA 927 (May 2014)

The face load factor is one of the most important items for a gear strength calculation. Current standards propose formulae for face load factor, but they are not always appropriate. AGMA 927 proposes a simpler and quicker algorithm that doesn't require a contact analysis calculation. This paper explains how this algorithm can be applied for gear rating procedures.

16 Heat Treat Suppliers Focused on Gears (August 2013)

Heat treat suppliers look to the gear industry and the upcoming combined Gear Expo/Heat Treat 2013 for new business.

17 Repair of High-Value, High-Demand Spiral Bevel Gears by Superfinishing (October 2012)

Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UH–60 helicopter tail rotor drivetrain. As spiral bevel gears for the UH–60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.

18 Case Study Involving Surface Durability and Improved Surface Finish (August 2012)

Gear tooth wear and micropitting are very difficult phenomena to predict analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.

19 Endurance Limit for Contact Stress in Gears (October/November 1984)

With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.

20 The Effect of Superfinishing on Gear Micropitting (March/April 2009)

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

21 Influence of Coatings and Surface Improvements on the Lifetime of Gears (July/August 2004)

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.

22 Non-Standard Cylindrical Gears (November/December 2004)

Curved face width (CFW) spur gears are not popular in the gear industry. But these non-metallic gears have advantages over standard spur gears: higher contact ratio, higher tooth stiffness, and lower contact and bending stresses.

23 Superfinishing Gears -- The State of the Art (November/December 2003)

Superfinishing the working surfaces of gears and their root fillet regions results in performance benefits.

24 Effects of Gear Surface Parameters on Flank Wear (January/February 2009)

Non-uniform gear wear changes gear topology and affects the noise performance of a hypoid gear set. The aggregate results under certain vehicle driving conditions could potentially result in unacceptable vehicle noise performance in a short period of time. This paper presents the effects of gear surface parameters on gear wear and the measurement/testing methods used to quantify the flank wear in laboratory tests.

25 Kinematical Simulation of Face Hobbing Indexing and Tooth Surface Generation of Spiral Bevel and Hypoid Gears (January/February 2006)

In addition to the face milling system, the face hobbing process has been developed and widely employed by the gear industry. However, the mechanism of the face hobbing process is not well known.

26 Influence of Surface Roughness on Gear Pitting Behavior (May/June 2006)

In earlier studies, surface roughness has been shown to have a significant influence on gear pitting life. This paper discusses how high surface roughness introduces a wear mechanism that delays the formation of pits. Accompanied by a full-page technical review.

27 Micropitting of Big Gearboxes: Influence of Flank Modification and Surface Roughness (May 2011)

Most research on micropitting is done on small-sized gears. This article examines whether those results are also applicable to larger gears.

28 Effect of Shot Peening on Surface Fatigue Life of Carburized and Hardened AISI 1910 Spur Gears (January/February 1986)

Gear surface fatigue endurance tests were conducted on two groups of 10 gears each of carburized and hardened AlSI 9310 spur gears manufactured from the same heat of material

29 Optimal Modifications of Gear Tooth Surfaces (March/April 2011)

In this paper a new method for the introduction of optimal modifications into gear tooth surfaces—based on the optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.

30 Spiral Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part IV (January/February 2011)

This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

31 A Split Happened on the Way to Reliable, Higher-Volume Gear Grinding (September/October 2005)

Bevel gear manufacturers live in one of two camps: the face hobbing/lapping camp, and the face milling/grinding camp.

32 A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral-Bevel Gears (March/April 1986)

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

News Items About face gears

1 KISSsoft Releases New Function for Face Gears (September 9, 2010)
A new functionality to generate a solid model of a face gear with arbitrary shaft angle and offset is implemented in the development vers... Read News