Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

face load factor - Search Results

Articles About face load factor


Articles are sorted by RELEVANCE. Sort by Date.

1 Application and Improvement of Face Load Factor Determination Based on AGMA 927 (May 2014)

The face load factor is one of the most important items for a gear strength calculation. Current standards propose formulae for face load factor, but they are not always appropriate. AGMA 927 proposes a simpler and quicker algorithm that doesn't require a contact analysis calculation. This paper explains how this algorithm can be applied for gear rating procedures.

2 A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral-Bevel Gears (March/April 1986)

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

3 Scoring Load Capacity of Gears Lubricated with EP-Oils (October/November 1984)

The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.

4 Controlling Tooth Loads In Helical Gears (March/April 1986)

Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel shafts.

5 Practical Analysis of Highly-Loaded Gears by Using the Modified-Scoring Index Calculation Method (September/October 1986)

The power of high speed gears for use in the petrochemical industry and power stations is always increasing. Today gears with ratings of up to 70,000kW are already in service. For such gears, the failure mode of scoring can become the limiting constraint. The validity of an analytical method to predict scoring resistance is, therefore, becoming increasingly important.

6 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part I (March/April 1987)

The load capacity rating of gears had its beginning in the 18th century at Leiden University when Prof. Pieter van Musschenbroek systematically tested the wooden teeth of windmill gears, applying the bending strength formula published by Galilei one century earlier. In the next centuries several scientists improved or extended the formula, and recently a Draft International Standard could be presented.

7 Application of Miner's Rule to Industrial Gear Drives (January/February 1990)

We need a method to analyze cumulative fatigue damage to specify and to design gear drives which will operate under varying load. Since load is seldom constant, most applications need this analysis.

8 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part 2 (May/June 1987)

In ParI 1 several scuffing (scoring) criteria were shown ultimately to converge into one criterion, the original flash temperature criterion according to Blok. In Part 2 it will be shown that all geometric influences may be concentrated in one factor dependent on only four independent parameters, of which the gear ratio, the number of teeth of the pinion, and the addendum modification coefficient of the pinion are significant.

9 Improvement in Load Capacity of Crossed Helical Gears (January/February 1987)

Crossed helical gear sets are used to transmit power and motion between non-intersecting and non-parallel axes. Both of the gears that mesh with each other are involute helical gears, and a point contact is made between them. They can stand a small change in the center distance and the shaft angle without any impairment in the accuracy of transmitting motion.

10 Load-Sharing Model for Polymer Cylindrical Gears (November/December 2011)

This paper presents an original method to compute the loaded mechanical behavior of polymer gears. Polymer gears can be used without lubricant, have quieter mesh, are more resistant to corrosion, and are lighter in weight. Therefore their application fields are continually increasing. Nevertheless, the mechanical behavior of polymer materials is very complex because it depends on time, history of displacement and temperature. In addition, for several polymers, humidity is another factor to be taken into account. The particular case of polyamide 6.6 is studied in this paper.

11 Influence of Grinding Burn on Pitting Capacity (August 2008)

This paper intends to determine the load-carrying capacity of thermally damaged parts under rolling stress. Since inspection using real gears is problematic, rollers are chosen as an acceptable substitute. The examined scope of thermal damage from hard finishing extends from undamaged, best-case parts to a rehardening zone as the worst case. Also, two degrees of a tempered zone have been examined.

12 Pitting Load Capacity of Helical Gears (May 2008)

Influences of Load Distribution and Tooth Flank Modifications as Considered in a New, DIN/ISO-Compatible Calculation Method

13 Generating Interchangeable 20-Degree Spur Gear Sets with Circular Fillets to Increase Load Carrying Capacity (July/August 2006)

This article presents a new spur gear 20-degree design that works interchangeably with the standard 20-degree system and achieves increased tooth bending strength and hence load carrying capacity.

14 Flank Load Carrying Capacity and Power Loss Reduction by Minimized Lubrication (May 2011)

The objective of this study was to investigate the limits concerning possible reduction of lubricant quantity in gears that could be tolerated without detrimental effects on their load carrying capacity.

15 Size and Material Influence on the Tooth Root, Pitting, Scuffing and Wear Load-Carrying Capacity of Fine-Module Gears (September 2011)

In this study, limiting values for the load-carrying-capacity of fine-module gears within the module range 0.3–1.0 mm were determined and evaluated by comprehensive, experimental investigations that employed technical, manufacturing and material influence parameters.

16 Comparison of Test Rig and Field Measurement Results on Gearboxes for Wind Turbines (October 2011)

This article describes some of the most important tests for prototypes conducted at Winergy AG during the product development process. It will demonstrate that the measurement results on the test rig for load distribution are in accordance with the turbine measurements.

17 Analysis of Load Distribution in Planet Gear Bearings (September 2011)

In epicyclic gear sets designed for aeronautical applications, planet gears are generally supported by spherical roller bearings with the bearing outer race integral to the gear hub. This article presents a new method to compute roller load distribution in such bearings where the outer ring can’t be considered rigid.

18 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

19 FZG Rig-Based Testing of Flank Load-Carrying Capacity Internal Gears (June/July 2012)

Micropitting, pitting and wear are typical gear failure modes that can occur on the flanks of slowly operated and highly stressed internal gears. However, the calculation methods for the flank load-carrying capacity have mainly been established on the basis of experimental investigations of external gears. This paper describes the design and functionality of the newly developed test rigs for internal gears and shows basic results of the theoretical studies. It furthermore presents basic examples of experimental test results.

20 Application Analysis (January/February 1993)

Questions: I have heard the terms "safety factor," "service factor," and "application factor" used in discussing gear design. what are these factors an dhow do they differ from one another? Why are they important?

21 Computer-Aided Design of the Stress Analysis of an Internal Spur Gear (May/June 1988)

Although there is plenty of information and data on the determination of geometry factors and bending strength of external gear teeth, the computation methods regarding internal gear design are less accessible. most of today's designs adopt the formulas for external gears and incorporate some kind of correction factors for internal gears. However, this design method is only an approximation because of the differences between internal gears and external gears. Indeed, the tooth shape of internal gears is different from that of external gears. One has a concave curve, while the other has a convex curve.

22 The Use of Boundary Elements For The Determination of the AGMA Geometry Factor (January/February 1988)

The geometry factor, which is a fundamental part of the AGMA strength rating of gears, is currently computed using the Lewis parabola which allows computation of the Lewis form factor.(1) The geometry factor is obtained from this Lewis factor and load sharing ratio. This method, which originally required graphical construction methods and more recently has been computerized, works reasonably well for external gears with thick rims.(2-6) However, when thin rims are encountered or when evaluating the strength of internal gears, the AGMA method cannot be used.

23 The European Rack Shift Coefficient 'X' for Americans (July/August 1993)

The use of dimensionless factors to describe gear tooth geometry seems to have a strong appeal to gear engineers. The stress factors I and J, for instance, are well established in AGMA literature. The use of the rack shift coefficient "x" to describe nonstandard gear proportions is common in Europe, but is not as commonly used in the United States. When it is encountered in the European literature or in the operating manuals for imported machine tools, it can be a source of confusion to the American engineer.

24 INFAC Reports on Recent Hobbing and Heat Treating Experiments (July/August 1995)

Chicago- Results of recent studies on residual stress in gear hobbing, hobbing without lubricants and heat treating were reported by representatives of INFAC (Instrumented Factory for Gears) at an industry briefing in March of this year.

25 Profile Shift (August 2012)

Three experts tackle the question of profile shift in this issue's edition of "Ask the Expert."

26 Comparing Standards (September/October 1998)

One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.

27 Load Distribution Analysis of Spline Joints (May 2014)

A finite elements-based contact model is developed to predict load distribution along the spline joint interfaces; effects of spline misalignment are investigated along with intentional lead crowning of the contacting surfaces. The effects of manufacturing tooth indexing error on spline load distributions are demonstrated by using the proposed model.

28 Calculation of Tooth Root Load Carrying Capacity of Beveloid Gears (June 2014)

In this paper, two developed methods of tooth root load carrying capacity calculations for beveloid gears with parallel axes are presented, in part utilizing WZL software GearGenerator and ZaKo3D. One method calculates the tooth root load-carrying capacity in an FE-based approach. For the other, analytic formulas are employed to calculate the tooth root load-carrying capacity of beveloid gears. To conclude, both methods are applied to a test gear. The methods are compared both to each other and to other tests on beveloid gears with parallel axes in test bench trials.

29 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

30 Comparative Load Capacity Evaluation of CBN-Finished Gears (May/June 1990)

Cubic boron nitride (CBN) finishing of carburized gearing has been shown to have certain economic and geometric advantages and, as a result, it has been applied to a wide variety of precision gears in many different applications. In critical applications such as aerospace drive systems, however, any new process must be carefully evaluated before it is used in a production application. Because of the advantages associated with this process, a test program was instituted to evaluate the load capacity of aerospace-quality gears finished by the CBN process as compared to geometrically identical gears finished by conventional grinding processes. This article presents a brief description of the CBN process, its advantages in an aerospace application, and the results of an extensive test program conducted by Boeing Helicopters (BH) aimed at an evaluation of the effects of this process on the scoring, surface durability, and bending fatigue properties of spur gears. In addition, the results of an x-ray diffraction study to determine the surface and subsurface residual stress distributions of both shot-peened and nonshot-peened CBN-ground gears as compared to similar conventionally ground gears are also presented.

31 CBN Gear Grinding - A Way to Higher Load Capacity (November/December 1993)

Because of the better thermal conductivity of CBN abrasives compared to that of conventional aluminum oxide wheels, CBN grinding process, which induces residual compressive stresses into the component, and possibly improves the subsequent stress behavior. This thesis is the subject of much discussion. In particular, recent Japanese publications claim great advantages for the process with regard to an increased component load capacity, but do not provide further details regarding the technology, test procedures or components investigated. This situation needs clarification, and for the this reason the effect of the CBN grinding material on the wear behavior and tooth face load capacity of continuously generated ground gears was further investigated.

32 Effect of Extended Tooth Contact on the Modeling of Spur Gear Transmissions (July/August 1994)

In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated, and the individual tooth load is overstated, especially for heavily loaded gears. This article compares the static transmission error and dynamic load of heavily loaded, low-contact-ratio spur gears when the effect of tooth flexibility has been considered and when it has been ignored. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.

33 Tooth Root Optimization of Powder Metal Gears - Reducing Stress from Bending and Transient Loads (June/July 2013)

This paper will provide examples of stress levels from conventional root design using a hob and stress levels using an optimized root design that is now possible with PM manufacturing. The paper will also investigate how PM can reduce stresses in the root from transient loads generated by abusive driving.

34 New Methods for the Calculation of the Load Capacity of Bevel and Hypoid Gears (June/July 2013)

Flank breakage is common in a number of cylindrical and bevel gear applications. This paper introduces a relevant, physically based calculation method to evaluate flank breakage risk vs. pitting risk. Verification of this new method through testing is demonstrably shown.

35 The Effect of Start-Up Load Conditions on Gearbox Performance and Life Failure Analysis, With Supporting Case Study (June 2009)

If a gear system is run continuously for long periods of time—or if the starting loads are very low and within the normal operating spectrum—the effect of the start-up conditions may often be insignificant in the determination of the life of the gear system. Conversely, if the starting load is significantly higher than any of the normal operating conditions, and the gear system is started and stopped frequently, the start-up load may, depending on its magnitude and frequency, actually be the overriding, limiting design condition.

36 Surface Damage Caused by Gear Profile Grinding and its Effects on Flank Load Carrying Capacity (September/October 2004)

Instances of damage to discontinuous form ground and surface-hardened gears, especially of large scale, have recently increased. This may be attributed partly to a faulty grinding process with negative effects on the surface zones and the surface properties.

37 Tribology Aspects in Angular Transmission Systems, Part V: Face Gears (March/April 2011)

This article is part five of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

38 Spiral Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part IV (January/February 2011)

This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

39 Cylkro Face Gears (November/December 2010)

Dutch design and Swiss ingenuity cause transmission breakthrough. Updated examples of Cylkro face gears in action.

40 Optimal Modifications of Gear Tooth Surfaces (March/April 2011)

In this paper a new method for the introduction of optimal modifications into gear tooth surfaces—based on the optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.

41 Micropitting of Big Gearboxes: Influence of Flank Modification and Surface Roughness (May 2011)

Most research on micropitting is done on small-sized gears. This article examines whether those results are also applicable to larger gears.

42 Effect of Shot Peening on Surface Fatigue Life of Carburized and Hardened AISI 1910 Spur Gears (January/February 1986)

Gear surface fatigue endurance tests were conducted on two groups of 10 gears each of carburized and hardened AlSI 9310 spur gears manufactured from the same heat of material

43 Endurance Limit for Contact Stress in Gears (October/November 1984)

With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.

44 A Split Happened on the Way to Reliable, Higher-Volume Gear Grinding (September/October 2005)

Bevel gear manufacturers live in one of two camps: the face hobbing/lapping camp, and the face milling/grinding camp.

45 Influence of Surface Roughness on Gear Pitting Behavior (May/June 2006)

In earlier studies, surface roughness has been shown to have a significant influence on gear pitting life. This paper discusses how high surface roughness introduces a wear mechanism that delays the formation of pits. Accompanied by a full-page technical review.

46 Non-Standard Cylindrical Gears (November/December 2004)

Curved face width (CFW) spur gears are not popular in the gear industry. But these non-metallic gears have advantages over standard spur gears: higher contact ratio, higher tooth stiffness, and lower contact and bending stresses.

47 Superfinishing Gears -- The State of the Art (November/December 2003)

Superfinishing the working surfaces of gears and their root fillet regions results in performance benefits.

48 The Effect of Superfinishing on Gear Micropitting (March/April 2009)

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

49 Influence of Coatings and Surface Improvements on the Lifetime of Gears (July/August 2004)

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.

50 Kinematical Simulation of Face Hobbing Indexing and Tooth Surface Generation of Spiral Bevel and Hypoid Gears (January/February 2006)

In addition to the face milling system, the face hobbing process has been developed and widely employed by the gear industry. However, the mechanism of the face hobbing process is not well known.

51 Face Gears: Geometry and Strength (January/February 2007)

There are three distinct gear types in angle drives. The most commonly used are bevel and worm drives. Face gear drives are the third alternative.

52 Surface Fatigue Life on CBN and Vitreous Ground Carburized and Hardened AISA 9310 Spur Gears (January/February 1990)

Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

53 Improving Gear Manufacturing Quality With Surface Texture Measurement (March/April 1993)

The working surfaces of gear teeth are often the result of several machining operations. The surface texture imparted by the manufacturing process affects many of the gear's functional characteristics. To ensure proper operation of the final assembly, a gear's surface texture characteristics, such as waviness and roughness, can be evaluated with modern metrology instruments.

54 An Investigation of the Influence of Shaft Misalignment on Bending Stresses of Helical Gears with Lead Crown (November/December 2008)

In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.

55 Experience with Large, High-Speed Load Gears (July 2007)

The main theme of this article is high-capacity, high-speed load gears in a power transmission range between 35 MW and 100 MW for generators and turbo-compressors driven by gas or steam turbines.

56 Thermal Behavior of Helical Gears (May 2007)

An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied.

57 Influence of Relative Displacements Between Pinion and Gear on Tooth Root Stresses of Spiral Bevel Gears (July/August 1985)

The manufacturing quality of spiral bevel gears has achieved a very high standard. Nevertheless, the understanding of the real stress conditions and the influences. of certain parameters is not satisfactory.

58 Longitudinal Load Distribution Factor of Helical Gears (July/August 1985)

The contact lines of a pair of helical gears move diagonally on the engaged tooth faces and their lengths consequently vary with the rotation of the gears.

59 Effects of Gear Surface Parameters on Flank Wear (January/February 2009)

Non-uniform gear wear changes gear topology and affects the noise performance of a hypoid gear set. The aggregate results under certain vehicle driving conditions could potentially result in unacceptable vehicle noise performance in a short period of time. This paper presents the effects of gear surface parameters on gear wear and the measurement/testing methods used to quantify the flank wear in laboratory tests.

60 Load Carrying Capacity of Screw Helical Gears with Steel Pinions and Plastic Wheels (July/August 2004)

There is an increasing significance of screw helical and worm gears that combine use of steel and plastics. This is shown by diverse and continuously rising use in the automotive and household appliance industries. The increasing requirements for such gears can be explained by the advantageous qualities of such a material combination in comparison with that of the traditional steel/bronze pairing.

61 Setting Load Parameters for Viable Fatigue Testing of Gears in Powertrain Axles Part I: Single-Reduction Axles (August 2014)

This presentation introduces a new procedure that - derived from exact calculations - aids in determining the parameters of the validation testing of spiral bevel and hypoid gears in single-reduction axles.

62 Heat Treat Suppliers Focused on Gears (August 2013)

Heat treat suppliers look to the gear industry and the upcoming combined Gear Expo/Heat Treat 2013 for new business.

63 Cylkro Gears: An Alternative in Mechanical Power Transmission (May/June 1996)

Bevel gears have been the standard for several decades in situations where power transmission has to occur between shafts mounted at a given angle. Now a new approach has been developed that challenges the bevel gear's de facto monopoly in such applications. The concept is based on the principle of the crown gear; i.e., a cylindrical pinion mates with a face gear. Crown Gear B.V. in Enschede, Holland, is the developer of these specialty gear teeth, which are marketed under the trade name Cylkro.

64 Gear Tip Chamfer and Gear Noise; Surface Measurement of Spiral Bevel Gear Teeth (July/August 1993)

Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?

65 Basic Honing & Advanced Free-Form Honing (July/August 1997)

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

66 Obtaining Meaningful Surface Roughness Measurements on Gear Teeth (July/August 1997)

Surface roughness measuring of gear teeth can be a very frustrating experience. Measuring results often do not correlate with any functional characteristic, and many users think that they need not bother measuring surface roughness, since the teeth are burnished in operation. They mistakenly believe that the roughness disappears in a short amount of time. This is a myth! The surface indeed is shiny, but it still has considerable roughness. In fact, tests indicate that burnishing only reduces the initial roughness by approximately 25%.

67 Repair of High-Value, High-Demand Spiral Bevel Gears by Superfinishing (October 2012)

Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UH–60 helicopter tail rotor drivetrain. As spiral bevel gears for the UH–60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.

68 Case Study Involving Surface Durability and Improved Surface Finish (August 2012)

Gear tooth wear and micropitting are very difficult phenomena to predict analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.

69 The Effect of Manufaturing Microgeometry Variations on the Load Distribution Factor and on Gear Contact and Root Stresses (July 2009)

Traditionally, gear rating procedures consider manufacturing accuracy in the application of the dynamic factor, but only indirectly through the load distribution are such errors in the calculation of stresses used in the durability and gear strength equations. This paper discusses how accuracy affects the calculation of stresses and then uses both statistical design of experiments and Monte Carlo simulation techniques to quantify the effects of different manufacturing and assembly errors on root and contact stresses.