gear alignment - Search Results

Articles About gear alignment

Articles are sorted by RELEVANCE. Sort by Date.

1 New Techniques for Aligning and Maintaining Large Ring Gears (September/October 1985)

This paper presents two new techniques for aligning and maintaining large ring gears. One technique uses lubricant temperature analysis, and the other uses stop action photography.

2 The Basics of Gear Metrology and Terminology Part I (September/October 1998)

It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.

3 The Basics of Gear Metrology and Terminology Part II (November/December 1998)

In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.

4 Determining Spline Misalignment Capabilities (November/December 1995)

Introducing backlash into spline couplings has been common practice in order to provide for component eccentric and angular misalignment. The method presented here is believed to be exact for splines with even numbers of teeth and approximate for those with odd numbers of teeth. This method is based on the reduction of the maximum effective tooth thickness to achieve the necessary clearance. Other methods, such as tooth crowning, are also effective.

5 Transmission Errors and Bearing Contact of Spur, Helical, and Spiral Bevel Gears (July/August 1990)

An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.

6 An Investigation of the Influence of Shaft Misalignment on Bending Stresses of Helical Gears with Lead Crown (November/December 2008)

In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.

7 Crowning: A Cheap Fix for Noise Reduction and Misalignment Problems and Applications (March/April 1987)

Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gear boxes transmitting more power at higher rpms and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise without increasing costs.

8 Misalignment No Beauty in Gearsets (May/June 1991)

When we have problems with gearset failure, a common diagnosis is misalignment. What exactly is that and how do we prevent it? The second most common "killer" of good gear sets is misalignment (dirt, or abrasive wear, is first). Gear teeth simply won't carry the load if they don't touch, and the portion that does touch has to carry an overload to make up for the missing contact area.