Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

gear manufacturing - Search Results

Related Buyers Guide Categories

Gear Manufacturing Services

Related Companies

Comtorgage Corporation
Comtorgage Corporation manufactures a variety of hand-held, indicating gages (analog or digital) designed and built to measure various characteristics of machined, molded, forged, and pressed parts. Comtorgages are intended for use on the shop floor, or in the lab, wherever there is a requirement for frequent, and accurate monitoring of specific dimensions, with or without data collection.

Gleason Cutting Tools Corporation
Wherever superior gear performance is needed -- from hand-held power tools to super tankers, from automobiles to aircraft -- Gleason Cutting Tools Corporation gear tools are at work, helping raise the standard of bevel and cylindrical gear manufacturing to levels unimaginable just a few years ago.

Liebherr America
Liebherr Gear Technology Co. is your North American access point to a broad range of technically advanced gear manufacturing technologies and processes.

Mitsubishi Heavy Industries America
Our family of gear cutting machines shares a name and a whole lot more. Mitsubishi gear hobbers, shapers, shavers and grinders also share Mitsubishi machine construction and Mitsubishi software and have common controls. That is why only Mitsubishi gear machines--the most complete family of gear machines--can deliver the fastest CNC learning curves and the highest quality gears.

Samputensili S.p.A.
SU America is a unit of Samputensili S.p.A. of Bologna, Italy and a part of the multi-national Maccaferri Industrial Group.

Star Cutter Co.
Headquartered in Farmington Hills, MI, StarCut Sales, Inc. is a wholly owned subsidiary of Star Cutter Company and is a partner in the Star SU LLC enterprise for marketing, sales, and service. Through Star SU and StarCut Sales, Inc.'s international organization Star Cutter Company markets and services its products in North America, South America, Europe and the Far East.

Star SU LLC
SU America is a unit of Samputensili S.p.A. of Bologna, Italy and a part of the multinational Maccaferri Industrial Group of companies. Samputensili produces machines, tools and services for the gear manufacturing industry. Manufacturing facilities are located in Italy, France, Brazil, Korea, Japan and the United States.

Drake Manufacturing Services Co. Inc.
Klingelnberg GmbH
Parker Industries Inc.

Related Power Transmission Categories

Bevel Gear Manufacturing
Custom Gear Manufacturing
Gear Manufacturing Services
Stock Gear Manufacturing

Related Power Transmission Companies

Arrow Gear Co.
Since its inception in 1947, Arrow Gear Company has continued to build a solid reputation for quality, service and reliability. From the very beginning, Arrow has provided high precision spur, helical and bevel gears that meet the rapidly changing and the demanding requirements of many industries.

Kamar Industries
Kamar Industries manufactures custom gears, provides stock gears and related power transmission components. Small quantity gear orders and quick lead times available in addition to production lot runs. We serve a diverse cross section of industry sectors with gear products to satisfy each unique application.

Midwest Gear & Tool, Inc.
With more than 20 years in gear manufacturing, Midwest Gear & Tool has an elaborate straight and spiral bevel gear manufacturing capability. We also manufacture a complete line of hydraulic, electric and manual transmissions and reducers. We m...

Precipart
We're building solutions to critical motion control specifications every day. That's because custom speedreducers and gearmotors from 7mm diameter and larger are our specialty. And our profound knowledge of materials and gear manufacturing gives youan edge. From our engineering expertise to prototype and production runs, we work in a wide range of industries, including the aerospace/avionics, scientific instrumentation and medical diagnostic and clinical equipment markets.

Ronson Gears Pty. Ltd.
Established in 1954 Ronson Gears, is your English speaking and English thinking Asia-Pacific alternative for Precision Gears and Gear Assemblies. Doing business internationally for almost 60 years, Ronson Gears has garnered a reputation for quality, delivery and first-class customer service.

Articles About gear manufacturing


1 Gear Manufacturing in the Far East (January/February 2006)

This article gives readers a glimpse of some companies that manufacture gears in the Far East. We've talked with more than a dozen companies in India, Taiwan and Korea...

2 The Past, Present and Future of Gear Manufacturing (June 2014)

The gear industry is full of storytellers. It's a niche market that boasts a remarkable cast of characters that have been sharing their stories with us for 30 years. In that time, the editors and staff of Gear Technology magazine have had the privilege to report the ins and outs of this highly-specialized industry. From technical articles to case studies and features, the main focus of this magazine has been to "provide a forum of discovery and innovation for you, the gear manufacturing industry." Our Publisher, Michael Goldstein, said as much in our inaugural issue of May/June 1984.

3 Bevel Gear Manufacturing Troubleshooting (March/April 1991)

The quality of gearing is a function of many factors ranging from design, manufacturing processes, machine capability, gear steel material, the machine operator, and the quality control methods employed. This article discusses many of the bevel gear manufacturing problems encountered by gear manufacturers and some of the troubleshooting techniques used.

4 Applying Process Control to Gear Manufacturing (March/April 1992)

A common goal of gear manufacturers is to produce gearing that is competitively priced, that meets all quality requirements with the minimum amount of cost in a timely manner, and that satisfies customers' expectations. In order to optimize this goal, the gear manufacturer must thoroughly understand each manufacturing process specified, the performance capability of that process, and the effect of that particular process as it relates to the quality of the manufactured gear. If the wrong series of processes has been selected or a specific selected process is not capable of producing a quality part, manufacturing costs are greatly increased.

5 Improving Gear Manufacturing Quality With Surface Texture Measurement (March/April 1993)

The working surfaces of gear teeth are often the result of several machining operations. The surface texture imparted by the manufacturing process affects many of the gear's functional characteristics. To ensure proper operation of the final assembly, a gear's surface texture characteristics, such as waviness and roughness, can be evaluated with modern metrology instruments.

6 CNC Gear Manufacturing - Where Are We Now (January/February 1995)

These days it's hard to get through breakfast without reading or hearing another story about how the computer is changing the way we live, sleep, eat, breathe, make things and do business. The message is that everything is computerized now, or, if it isn't, it will be by next Tuesday at the latest, Well, maybe.

7 Improved Ion Bond Recoating for the Gear Manufacturing Industry (January/February 1997)

This article summarizes the development of an improved titanium nitride (TiN) recoating process, which has, when compared to conventional recoat methods, demonstrated tool life increases of up to three times in performance testing of hobs and shaper cutters. This new coating process, called Super TiN, surpasses the performance of standard TiN recoating for machining gear components. Super TiN incorporates stripping, surface preparation, smooth coating techniques and polishing before and after recoating. The combination of these improvements to the recoating process is the key to its performance.

8 Involute Inspection Methods and Interpretation of Inspection Results (July/August 1997)

What is so unique about gear manufacturing and inspection? Machining is mostly associated with making either flat or cylindrical shapes. These shapes can be created by a machine's simple linear or circular movements, but an involute curve is neither a straight line nor a circle. In fact, each point of the involute curve has a different radius and center of curvature. Is it necessary to go beyond simple circular and linear machine movements in order to create an involute curve? One of the unique features of the involute is the fact that it can be generated by linking circular and linear movements. This uniqueness has become fertile soil for many inventions that have simplified gear manufacturing and inspection. As is the case with gear generating machines, the traditional involute inspection machines take advantage of some of the involute properties. Even today, when computers can synchronize axes for creating any curve, taking advantage of involute properties can be very helpful. I t can simplify synchronization of machine movements and reduce the number of variables to monitor.

9 The Effects of Surface Hardening on the Total Gear Manufacturing System (January/February 1991)

Carburized and hardened gears have optimum load-carrying capability. There are many alternative ways to produce a hard case on the gear surface. Also, selective direct hardening has some advantages in its ability to be used in the production line, and it is claimed that performance results equivalent to a carburized gear can be obtained. This article examines the alternative ways of carburizing, nitriding, and selective direct hardening, considering equipment, comparative costs, and other factors. The objective must be to obtain the desired quality at the lowest cost.

10 Advances from Aachen - WZL and GRC Contribute to Gear Manufacturing (July/August 2005)

Aachen has long been the center of European gear research.

11 The Outlook for Gear Manufacturing - A European Perspective (July/August 2005)

Hagen Hofmann of Hoefler presents his views on global trade, competition and the future of the gear industry.

12 Heller Introduces Gear Manufacturing on Five-Axis Milling Machines (August 2010)

In co-operation with Voith, a major transmission manufacturer in Germany, Heller has developed a process that significantly enhances the productivity of pre-milling and gear milling operations performed on a single 5-axis machining center.

13 Gear Manufacturing Methods - Forming the Teeth (January/February 1987)

The forming of gear teeth has traditionally been a time-consuming heavy stock removal operation in which close tooth size, shape, runout and spacing accuracy are required. This is true whether the teeth are finished by a second forming operation or a shaving operation.

14 Alternative Gear Manufacturing (July/August 1998)

the gear industry is awash in manufacturing technologies that promise to eliminate waste by producing gears in near-net shape, cut production and labor costs and permit gear designers greater freedom in materials. These methods can be broken down into the following categories: alternative ways to cut, alternative ways to form and new, exotic alternatives. Some are new, some are old and some are simply amazing.

15 Cutting Fluid Selection and Process Controls for the Gear Manufacturing Industry (July/August 1987)

The last decade has been a period of far-reaching change for the metal working industry. The effect of higher lubricant costs, technical advances in machine design and increasing competition are making it essential that manufacturers of gears pay more attention to testing, selecting and controlling cutting fluid systems. Lubricant costs are not a large percentage of the process cost relative to items such as raw materials, equipment and labor, and this small relative cost has tended to reduce the economic incentive to evaluate and to change cutting fluids.

16 Beachfront Gear Manufacturing (January/February 2007)

Lots of us became interested in gears while taking drafting classes in high school.

17 Fundamentals of Gears and Gear Manufacturing (March/April 2003)

Video Review for March/April 2003.

18 Invest in the Future--Now! (September/October 1987)

It is with great anticipation that we move closer to AGMA's Fall Technical Conference and Gear Expo '87, which is being held on Oct. 4-6 in Cincinnati, OH. This bold undertaking by both AGMA and the exhibitors in the Expo's 160 booths is an attempt to make a major change in the industry's approach to the exposition of gear manufacturing equipment. By combining the Expo with the Fall Technical Conference, those involved in gear manufacturing will have the opportunity to review the latest equipment, trends, and most innovative ideas, while keeping up with the newest technology in the industry.

19 Gear Manufacturing Past, Present & Future (January/February 2000)

Roughly 100 years ago, Cornelius J. Brosnan of Springfield, Massachusetts, invented and received the first U.S. patent for a paper clip. At about the same time, his fellow inventors were coming up with such marvels as the zipper, the safety razor and the typewriter.

20 Shaper Cutters-Design & Applications Part 1 (March/April 1990)

Gear shaping is one of the most popular production choices in gear manufacturing. While the gear shaping process is really the most versatile of all the gear manufacturing methods and can cut a wide variety of gears, certain types of gears can only be cut by this process. These are gears closely adjacent to shoulders; gears adjacent to other gears, such as on countershafts; internal gears, either open or blind ended; crown or face gears; herringbone gears of the solid configuration of with a small center groove; rack; parts with filled-in spaces or teeth, such as are used in some clutches.

21 How Gear Hobbing Works (March/April 2013)

Hobbing is one of the most fundamental processes in gear manufacturing. Its productivity and versatility make hobbing the gear manufacturing method of choice for a majority of spur and helical gears.

22 Are YOU Having Your Best Year Ever (June/July 2011)

Publisher Michael Goldstein discusses why some gear manufacturing companies are enjoying record years.

23 Induction Heat Treating Gains Ground through Advances in Technology (March/April 2011)

In recent years, there has been significant interest in expanding the use of induction hardening in gear manufacturing operations. Over the past several years, many of the limits to induction hardening have shrunk, thanks to recent advances in technology, materials and processing techniques.

24 Recent Developments in Gear Metrology (November/December 1991)

Metrology is a vital component of gear manufacturing. Recent changes in this area, due in large part to the advent of computers, are highlighted in this article by comparison with more traditional methods.

25 New Developments in Gear Hobbing (March/April 2010)

Several innovations have been introduced to the gear manufacturing industry in recent years. In the case of gear hobbing—the dry cutting technology and the ability to do it with powder-metallurgical HSS—might be two of the most impressive ones. And the technology is still moving forward. The aim of this article is to present recent developments in the field of gear hobbing in conjunction with the latest improvements regarding tool materials, process technology and process integration.

26 Editorial (May/June 1984)

Over the years, we have traveled extensively throughout the industrialized world, and became increasingly aware of the availability of enormous amounts of technical writing concerning research, experiments, and techniques in the gear manufacturing field. New manufacturing methods, materials, and machines were continuously being developed, but the technical information about them was not readily available to those that could best use it. There was no central source for disseminating this knowledge.

27 Industry Shows Shift Emphasis (January/February 1987)

A change has taken place within the industry that is going to have an enormous effect on the marketing, sales, and purchasing of gear manufacturing and related equipment. This change was the American Gear Manufacturers' Association, first biennial combination technical conference and machine tool minishow.

28 Getting Started in Exporting (March/April 1993)

Exporting. It's one of the hot strategies for helping boost businesses of all kinds, gear manufacturing among them. With domestic markets tight and new markets opening up overseas, exporting seems like a reasonable tactic. But while the pressure is on to sell overseas, there is equal, justifiable concern about whether the move is a good one. Horror stories abound about foreign restrictions, bureaucratic snafus, carloads of paperwork, and the complications and nuances of doing business in other languages and with other cultures.

29 Editorial (November/December 1989)

The press release on my desk this morning said, "The (precision metal working) industry cannot attract enough qualified applicants. As many as 1,500 jobs a year (in the Chicago are alone) are going unfilled." So what else is new? That's just hard proof confirming the suspicion many of us have had for some time. Some of the best, most qualified and experienced people in our shops are reaching retirement age, and there's no one around to fill their spots. And, if the situation is bad in the metal working trades in general, it's even more critical in the gearing industry. Being small and highly specialized, gear manufacturing attracts even less attention and finds recruitment harder than the other precision metal trades.

30 The Wafer Shaper Cutter (March/April 1989)

In 1985 a new tooling concept for high volume gear production was introduced to the gear manufacturing industry. Since then this tool, the wafer shaper cutter, has proven itself in scores of applications as a cost-effective, consistent producer of superior quality parts. This report examines the first high-production installation at the plant of a major automotive supplies, where a line of twenty shapers is producing timing chain sprockets.

31 Basic Spur Gear Design (November/December 1988)

Primitive gears were known and used well over 2,000 years ago, and gears have taken their place as one of the basic machine mechanisms; yet, our knowledge and understanding of gearing principles is by no means complete. We see the development of faster and more reliable gear quality assessment and new, more productive manufacture of gears in higher materials hardness states. We have also seen improvement in gear applications and design, lubricants, coolants, finishes and noise and vibration control. All these advances push development in the direction of smaller, more compact applications, better material utilization and improved quietness, smoothness of operation and gear life. At the same time, we try to improve manufacturing cost-effectiveness, making use of highly repetitive and efficient gear manufacturing methods.

32 Technical Calendar (March/April 1986)

AGMS's 1986 Manufacturing Symposium will offer an open forum with industry experts and papers on topics of interest to everyone involved in gear manufacturing.

33 The Paperless Factory (January/February 1995)

You're already a veteran of the computer revolution. Only you and your controller know how much money you've spent and only your spouse knows how many sleepless nights you've had in the last ten years trying to carve out a place in the brave new world of computerized gear manufacturing. PC's, CNCs, CAD, CAM, DNC, SPC, CMM: You've got a whole bowl of alphabet soup out there on the shop floor. Overall these machines have lived up to their promises. Production time is down, quality is up. You have fewer scrapped parts and better, more efficient machine usage.

34 Carbide Hobbing Case Study (May/June 2002)

Bodine Electric Co. of Chicago, IL., has a 97-year history of fine-and medium-pitch gear manufacturing. Like anywhere else, traditions, old systems, and structures can be beneficial, but they can also become paradigms and obstacles to further improvements. We were producing a high quality product, but our goal was to become more cost effective. Carbide hobbing is seen as a technological innovation capable of enabling a dramatic, rather than an incremental, enhancement to productivity and cost savings.

35 IMTS 2012 Booth Listings (September 2012)

Complete listing of booths with relevant gear manufacturing technologies.

36 Gear Measurement Traceability and Uncertainty (July/August 2000)

Until recently, there was a void in the quality control of gear manufacturing in this country (Ref. 1). Gear measurements were not traceable to the international standard of length through the National Institute of Standards and Technology (NIST). The U.S. military requirement for traceability was clearly specified in the military standard MIL-STD-45662A (Ref. 2). This standard has now been replaced by commercial sector standards including ISO 9001:1994 (Ref. 3), ISO/IEC Guide 25 (Ref, 4), and the U.S. equivalent of ISO/IEC Guide 25 - ANSI/NCSL Z540-2-1997 (Ref. 5). The draft replacement to ISO/IEC Guide 25 - ISO 17025 states that measurements must either be traceable to SI units or reference to a natural constant. The implications of traceability to the U.S. gear industry are significant. In order to meet the standards, gear manufacturers must either have calibrated artifacts or establish their own traceability to SI units.

37 Management on the High Seas (May/June 2000)

Most Navy brass would say that Commander D. Michael Abrashoff ran a loose ship. But his style of empowering his crew by delegating authority is changing the way the Navy thinks about management. His speech at the recent annual meeting of the American Gear Manufacturers Association offered a simple, common-sense approach that can be applied not only to running a ship, but also to gear manufacturing or any other industry.

38 Ferritic Nitrocarburizing Gears to Increase Wear Resistance and Reduce Distortion (March/April 2000)

Quality gear manufacturing depends on controlled tolerances and geometry. As a result, ferritic nitrocarburizing has become the heat treat process of choice for many gear manufacturers. The primary reasons for this are: 1. The process is performed at low temperatures, i.e. less than critical. 2. the quench methods increase fatigue strength by up to 125% without distorting. Ferritic nitrocarburizing is used in place of carburizing with conventional and induction hardening. 3. It establishes gradient base hardnesses, i.e. eliminates eggshell on TiN, TiAIN, CrC, etc. In addition, the process can also be applied to hobs, broaches, drills, and other cutting tools.

39 Goldstein's Paradox (March/April 2000)

I just got off the phone with an associate of mine at a large gear manufacturing company.I was congratulating him on being awarded a new contract when he told me that they had just experienced a substantial downsizing.

40 2012 State of the Gear Industry (November/December 2012)

Gear Technology’s annual state-of-the-gear-industry survey polls gear manufacturers about the latest trends and opinions relating to the overall health of the gear industry. As in years past, the survey was conducted anonymously, with invitations sent by e-mail to gear manufacturing companies around the world.

41 Gear Industry Buyers Guide 2012 (November/December 2012)

The 2012 Gear Technology Buyers Guide was compiled to provide you with a handy resource containing the contact information for significant suppliers of machinery, tooling, supplies and services used in gear manufacturing.

42 Buyers Guide 2013 Categories (November/December 2013)

The 2013 Gear Technology Buyers Guide was compiled to provide you with a handy resource containing the contact information for significant suppliers of machinery, tooling, supplies and services used in gear manufacturing.

43 IMTS 2014 Product Preview (August 2014)

An in-depth look at the major booths with the latest technology used in gear manufacturing.

44 2013 State of the Gear Industry (November/December 2013)

Gear Technology’s annual State-of- the-Gear-Industry survey polls gear manufacturers about the latest trends and opinions relating to the overall health of the gear industry. As in years past, the survey was conducted anonymously, with invitations sent by e-mail to gear manufacturing companies around the world.

45 Opportunity Knocked (October 2013)

For anyone involved in gear manufacturing, Gear Expo is an absolute treasure. In 2013, it was bigger and more varied than it's been in a decade. With 226 exhibitors covering every conceivable gear-related technology, Gear Expo offered visitors unparalleled opportunities to interview potential new suppliers.

46 GT Extras (March/April 2013)

A sampling of newsletter articles and videos related to gear manufacturing from March/April 2013.

47 EMO 2013 - Intelligence in Production (August 2013)

Preview of some of the exhibits relevant to gear manufacturing at the upcoming EMO 2013.

48 Guide to Gear Expo (September/October 1999)

Thousands of gear industry professionals will converge October 24-27 in Nashville, TN, for Gear Expo 99, the industry's biennial collection of the latest in gear manufacturing technology. With nearly 50,000 square feet of exhibit space sold more than two months in advance of the show, this year's Gear Expo will offer visitors more opportunity for supplier comparison than ever before. As of July 20, 166 suppliers of equipment, tooling, services and precision gear products were scheduled to participate, with as many as 20 additional booths yet to be sold, according to AGMA vice president and Gear Expo show manager Kurt Medert. The largest previous Gear Expo was held in 1997 in Detroit, with 43,100 square feet of exhibit space and 161 exhibitors.

49 Bigger and Better Than Ever (July/August 1999)

Gear Expo 99, AGMA's biennial showcase for the gear industry, has left the Rust Belt this year and landed in Music City U.S.A., Nashville, Tennessee. The event, with exhibitors from around the globe showing off the latest in gear manufacturing as well as metal working processes, will be held at the Nashville Convention Center, October 24-27, 1999. According to Kurt Medert, AGMA vice president and Gear Expo show manager, "In choosing Nashville, AGMA;s Trade Show Advisory Council found a city that is an excellent trade show site. It has the right mix of convention center, nearby hotels, and a clean downtown area with entertainment readily available for the exhibitors and visitors alike. Nashville is in the heart of southern industry, which we see as a focus of growth for the gear industry and its customers."

50 Cutting Tools Now (May/June 1996)

The cutting tool is basic to gear manufacturing. Whether it's a hob, broach, shaper cutter or EDM wire, not much gets done without it. And the mission of the tool remains the same as always; removing material as quickly, accurately and cost-effectively as possible. Progress in the field tends to be evolutionary, coming gradually over time, but recently, a confluence of emerging technologies and new customer demands has caused significant changes in the machines, the materials and the coatings that make cutting tools.

51 18 Things You Should Know About SPC for Gears (November/December 1996)

Statistical Precess Control (SPC) and statistical methods in general are useful techniques for identifying and solving complex gear manufacturing consistency and performance problems. Complex problems are those that exist in spite of our best efforts and the application of state-of-the-art engineering knowledge.

52 Gear Grinding 1995 (July/August 1995)

Gear grinding is one of the most expensive and least understood aspects of gear manufacturing. But with pressures for reduced noise, higher quality and greater efficiency, gear grinding appears to be on the rise.

53 George Wyss & Dennis Richmond of Reishauer Corporation (July/August 1995)

For this interview, we spoke with George Wyss, president, and Dennis Richmond, vice president of Reishauer Corporation about gear grinding and its place in gear manufacturing today.

54 Crowning: A Cheap Fix for Noise and Misalignment Problems (March/April 2010)

Fred Young, CEO of Forest City Gear, talks about sophisticated gear manufacturing methods and how they can help solve common gear-related problems.

55 Gear Heat Treating in the 90s: Beyond Black Magic (March/April 1995)

Heat Treating - The evil twin of the gear processing family. Heat treating and post-heat treating corrective processes can run up to 50% or more of the total gear manufacturing cost, so it's easy to see why, in these days when "lean and mean" production is the rage, and every part of the manufacturing process is under intense scrutiny, some of the harshest light falls on heat treating.

56 Chamfering and Deburring External Parallel Axis Gears (November/December 1996)

The chamfering and deburring operations on gear teeth have become more important as the automation of gear manufacturing lines in the automotive industry have steadily increased. Quieter gears require more accurate chamfers. This operation also translates into significant coast savings by avoiding costly rework operations. This article discusses the different types of chamfers on gear teeth and outlines manufacturing methods and guidelines to determine chamfer sizes and angles for the product and process engineer.

57 Gear Software You Didn't Know About (January/February 1997)

Designing and manufacturing gears requires the skills of a mathematician, the knowledge of an engineer and the experience of a precision machinist. For good measure, you might even include the are of a magician, because the formulas and calculations involved in gear manufacturing are so obscure and the processes so little known that only members of an elite cadre of professionals can perform them.

58 Dry Cutting of Bevel and Hypoid Gears (May/June 1998)

High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.

59 The Basics of Gear Metrology and Terminology Part I (September/October 1998)

It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.

60 Choosing the Right Heat Treater (March/April 1998)

Heat treating is a critical operation in gear manufacturing. It can make or break the quality of your final product. Yet it is one that frequently gear manufacturers outsource to someone else. Then the crucial question becomes, how do you know you're getting the right heat treater? How can you guarantee your end product when you have turned over this important process to someone else?

61 Capitalizing on Your Human Capital (November/December 1997)

A fundamental characteristic of the gear industry is that it is capital intensive. In the last decade, the gear manufacturing industry has been undergoing an intense drive toward improving and modernizing its capital equipment base. The Department of Commerce reports that annual sales of gear cutting equipment have increased nearly 60% since 1990. While this effort has paid off in increased competitiveness for the American gear industry, it is important to remember that there is another capital crucial to manufacturing success - "human capital."

62 Detroit in 97 - the Biggest Gear Expo Ever (July/August 1997)

"A Decade of Performance" is the theme of the American Gear Manufacturers Association Gear Expo 97, to be held October 19-22 at Detroit's Cobo Hall. Products and services related to every aspect of the gear manufacturing process, from turning and grinding the blanks to coating and inspection of the gears,will be represented at the show.

63 New Innovations in Hobbing - Part I (September/October 1994)

Prior to the introduction of titanium nitride to the cutting tool industry in the early 1980s, there was very little progress in the general application of hobbing in the gear cutting industry. The productivity gains realized with this new type of coating initiated a very active time of advancement in the gear manufacturing process.

64 Computer Aided Design (CAD) of Forging and Extrusion Dies for the Production of Gears by Forming (January/February 1985)

Material losses and long production times are two areas of conventional spur and helical gear manufacturing in which improvements can be made. Metalforming processes have been considered for manufacturing spur and helical gears, but these are costly due to the development times necessary for each new part design. Through a project funded by the U.S. Army Tank - Automotive Command, Battelle's Columbus Division has developed a technique for designing spur and helical gear forging and extrusion dies using computer aided techniques.

65 Full Speed Ahead (May 2012)

Indexable carbide insert (ICI) cutting tools continue to play a pivotal role in gear manufacturing. By offering higher cutting speeds, reduced cycle times, enhanced coatings, custom configurations and a diverse range of sizes and capabilities, ICI tools have proven invaluable for finishing and pre-grind applications. They continue to expand their unique capabilities and worth in the cutting tool market.

66 Hob Length Effects (September/October 1985)

Hobbing is probably the most popular gear manufacturing process. Its inherent accuracy and productivity makes it a logical choice for a wide range of sizes.

67 Gear Grinding 2003 (November/December 2003)

The benefits of ground gears are well known. They create less noise, transmit more power and have longer lives than non-ground gears. But grinding has always been thought of as an expensive process, one that was necessary only for aerospace or other high-tech gear manufacturing.

68 Sizing Up Big Gears (January/February 2010)

Quality, materials and technology continue to challenge the big gear manufacturing market.

69 Gear Corrosion During the Manufacturing Process (September/October 2009)

No matter how well gears are designed and manufactured, gear corrosion can occur that may easily result in catastrophic failure. Since corrosion is a sporadic and rare event and often difficult to observe in the root fillet region or in finely pitched gears with normal visual inspection, it may easily go undetected. This paper presents the results of an incident that occurred in a gear manufacturing facility several years ago that resulted in pitting corrosion and intergranular attack (IGA).

70 Gears: Kid-Tested, Museum-Approved (September/October 2009)

When children are asked what they want to be when they grow up, the answers are undoubtedly diverse. Some immediately respond with doctor, lawyer or firefighter while others take a more creative approach with answers like spy, princess or superhero. The Addendum Staff has yet to come across a youngster that seems committed to a career in gear manufacturing.

71 Journey to the Land of Manufacturing Milk and Honey--What Are You Waiting For? (July 2008)

How lean manufacturing principles can help transform your gear manufacturing business.

72 Machine Tool Evolution: Innovation andIngenuity Key to Long-Term Success (July 2008)

How machine tools R&D helps drive gear manufacturing productivity.

73 What to Know About Bevel Gear Grinding (September/October 2005)

Guidelines are insurance against mistakes in the often detailed work of gear manufacturing. Gear engineers, after all, can't know all the steps for all the processes used in their factories.

74 Help Wanted: Gear Company Seeks Perfect Machinist (January/February 2007)

Sales are up and it's time to hire some additional gear manufacturing personnel. Let's see--what qualities are wee looking for in the ideal candidates?

75 Adapting Lean for High-Mix, Low-Volume Manufacturing Facilities (August 2012)

Why traditional lean manufacturing approaches need to be adapted for job shop environments.

76 Gear Teeth With Byte (January/February 1998)

Computers are everywhere. It's gotten so that it's hard to find an employee who isn't using one in the course of his or her day - whether he be CEO or salesman, engineer or machinist. Everywhere you look, you find the familiar neutral-colored boxes and bright glowing screens. And despite the gear industry's traditional reluctance to embrace new technology, more and moe of what you find on those screens are gears.

77 Investing in Ourselves is the Key to Revitalizing American Manufacturing (July/August 1992)

Popular wisdom has it that manufacturing in the United States is no longer a viable entity. We are told that quality is poor, skilled labor is difficult to obtain, if not impossible, demand is low, and the government is helping to discourage business. So what should we do, give up?

78 A Quick-Start Approach for Implementing Lean in Job Shops (October 2012)

In the August issue, we examined the lean tools that will and will not work in high-mix, low-volume manufacturing facilities. Now, we will examine how to implement the tools that will work in the job shop with an approach that expands the capabilities of value stream mapping.

79 Product News (January/February 2013)

The complete Product News section from the January/February 2013 issue of Gear Technology.

80 Manufacturing and Pursuit of the American Dream: Reality or Fool's Quest (November/December 2012)

It wasn’t so very long ago that a high school-educated, able-bodied person with a will to work typically had little trouble finding a decent job in manufacturing. Whether at an area job shop, an OEM plant or auto plant—work was to be had. Work that paid well enough to marry, buy a home, feed, raise and educate a family—with even enough left over for a modest retirement pension.

81 The Winds of Change (January/February 1991)

Nashville - One of the highlights of this year's SME Advanced Gear Processing and Manufacturing Clinic was a tour of the new GM Saturn automobile manufacturing plant outside the city. There in the Tennessee hills is a hopeful vision of the future of the American automobile industry. It may well be the future of American large-scale manufacturing in general.

82 Industry News (November/December 2012)

The complete Industry News section from the November/December 2012 issue of Gear Technology.

83 If Only We Had a Crystal Ball... (November/December 2012)

Before we get into projections and prognostications about the future, let’s take a minute to review 2012. For many in the gear industry, the year was better than expected. Some manufacturers had a very successful year leading up to an even more successful manufacturing trade show (IMTS 2012). Others were searching for more business, hoping that the general state of the economy wouldn’t make things worse. In some cases, it did.

84 The Global Gear Industry - Insights, Projections, Facts and Figures (May 2011)

A series of short reports on global manufacturing growth and the gear industry's role.

85 Grinding Gears for Racing Transmissions (September/October 2009)

When you push 850 horsepower and 9,000 rpm through a racing transmission, you better hope it stands up. Transmission cases and gears strewn all over the racetrack do nothing to enhance your standing, nor that of your transmission supplier.

86 A Lean Strategy for Job Shops (November/December 2005)

POLCA: An alternative to Kanban for high-variety or custom-engineered products.

87 Medical Device Manufacturing Keeps Gear Industry Healthy (March/April 2006)

When Forest City Gear started manufacturing gears for medical components in the 1980s, it was a minuscule part of the company's business. Today, the medical device industry represents 18-20%.

88 Steadfast and Streamlined: Can Lean Soften the Economic Blow (August 2009)

Two high-volume gear production cells grace the shop floor at Delta Research Corporation in Livonia, Michigan. Thanks to lean manufacturing, these cells have never shipped a defective part to a customer since they were developed over three years ago.

89 Job Shop Lean (January/February 2013)

This is the first article in an eight-part "reality" series on implementing continuous improvement at Hoerbiger Corporation. Throughout 2013, Dr. Shahrukh Irani will report on his progress applying the job shop lean strategies he developed during his time at Ohio State University.

90 Where Are We Now (January/February 2010)

The struggles of the manufacturing economy in 2009 are well documented. Even among those of us with long careers, most of us have never seen activity come to a screeching halt the way it did last year. 2009 was tough on all of us. So, what should we expect in 2010?

91 Real-World Job Training the Lean Way -- And Loving It (September 2011)

Make no mistake -- lean manufacturing is here to stay. And no wonder. As a fiercely competitive global economy continues to alter companies’ “Main Street” thinking, that relatively new dynamic is spurring the need for “I-need-it-yesterday” production output. And for increasingly more industries -- big or small -- that means getting as lean as you can, as fast as you can.

92 American Manufacturing - Can It Be Saved (November/December 2009)

If anyone should ever need convincing that the state of American manufacturing is in ongoing decline, consider this: the state of Michigan has the highest concentration of engineers in the country, yet also has the highest unemployment rate. But there are ripples of hope out there as grassroots and otherwise organized groups are fighting the good fight in an attempt to reverse that trend.

93 Protecting Our Own (January/February 2011)

Publisher Michael Goldstein discusses the loss of U.S. manufacturing capability and what we should do about it.

94 A Second Rate Society - Never (August/September 1984)

What was once recognized as the unique genius of America is now slipping away from us and, in many areas, is now seen as a "second rate" capability. Unless action is taken now, this country is in real danger of being unable to regain its supremacy in technological development and economic vigor. First Americans must understand the serious implications of the problem; and second, we must dedicate ourselves to national and local actions that will ensure a greater scientific and technological literacy in America.

95 Gear Expo 2013 - An Oscar-Worthy Indy Production (August 2013)

We are well into an odd-number year, so it must be just about time for another Gear Expo. Indeed, the big show -- Gear Expo 2013 -- kicks off in Indianapolis at 9:00 a.m. Tuesday, September 17, wrapping up Thursday the 19th at 4:00 p.m. And whether you are exhibiting or attending, the bottom line is you are going -- a good thing for you, your company and the tightly knit U.S. gear industry.

96 DFM Crucial for Gear Industry Success (March/April 2013)

"Design for manufacturability" (DFM) is a well-established practice, essential to realizing the successful transformation of concepts into mass-produced gears and motion control devices. And yet, all too often issues that could have been avoided are identified very late in the process that impact production costs and schedules. This suggests that key DFM principles are often underutilized in practice and are not applied consistently - or to the degree necessary - to avoid these negative results.

97 Letters to the Editor (September 2013)

Readers respond to our "Job Shop Lean" column and the "My Gear is Bigger than Your Gear" article.

98 Product News (October 2013)

The complete Product News section from the October 2013 issue of Gear Technology.

99 Lean Resources (November/December 2013)

The final installment of our Job Shop Lean series includes a wide variety of educational resources to help you continue your own lean journey.

100 Industry News (August 2014)

The complete Industry News section from the August 2014 issue of Gear Technology.

101 Product News (January/February 2014)

The complete Product News section from the January/February 2014 issue of Gear Technology.

102 Industry News (August 2013)

The complete Industry News section from the August 2013 issue of Gear Technology.

103 Product News (September 2013)

The complete Product News section from the September 2013 issue of Gear Technology.

104 If You Rebuild It, They Will Buy It (May 2013)

It’s been said that the best ideas are often someone else's. But with rebuilt, retrofitted, re-controlled or remanufactured machine tools, buyer beware and hold onto your wallet. Sourcing re-work vendors and their services can require just as much homework, if not necessarily dollars, as with just-off-the-showroom-floor machines.

105 Industry News (May 2013)

The complete Industry News section from the May 2013 issue of Gear Technology

106 Job Shop Lean - Assembly (May 2013)

The Tiger Team from Hoerbiger looks for ways to cut waste and improve throughput in the company's assembly cell.

107 Design of a Flexible and Lean Machining Cell, Part I (June/July 2013)

Although a cell is dedicated to produce a single part family, it must have the requisite equipment capabilities, routing flexibility, cross-trained employees and, to the extent possible, minimal external process dependencies. Cells are often implemented in job shops since they provide the operational benefits of flowline production.

108 Design of a Flexible and Lean Machining Cell, Part II (August 2013)

Job shops may be ill-advised to undertake a complete reorganization into FLEAN (Flexible and Lean) cells. A FLEAN cell would (i) be flex-ible enough to produce any and all orders for parts that belong in a specific part family and (ii) utilize lean to the maximum extent possible to eliminate waste.

109 Notes From the Editor's Desk (May/June 1986)

This issue of Gear Technology, The Journal of Gear Manufacturing, marks the end of our second year of publication. As we approach our third year, it is time to review our statement of purpose. Gear Technology's primary goal was and is to be a reference source and a forum for the American Gear industry, and to advance gear technology throughout the world.

110 Guest Editorial (May/June 1984)

At a time when there are many pressures on the Gear Industry and its representative Association, the American Gear Manufacturers Association, it seems particularly appropriate that Gear Technology - The Journal of Gear Manufacturing appears. AGMA is particularly pleased to have the opportunity to write the first editorial for this magazine.

111 Viewpoint (November/December 1986)

Positive feedback regarding Gear Technology, the Journal of Gear Manufacturing, from some of its new readers.

112 Notes From the Editors Desk (May/June 1985)

This issue, our sixth, marks the 1st Anniversary of GEAR TECHNOLOGY, The Journal of Gear Manufacturing.

113 The Next Generation of Gear Specialists (January/February 1996)

AGMA has an excellent Training School for Gear Manufacturing. It's a great product providing a great service to the gear industry. Thus far we've educated 117 employees from 71 companies; students range from new hires with no experience to company presidents. Essentially every class since December, 1992, has been sold out.

114 Looking To The Future (May/June 1990)

Six years ago this month, the very first issue of Gear Technology, the Journal of Gear Manufacturing, went to press. The reason for starting the publication was a straightforward one: to provide a forum for the presentation of the best technical articles on gear-related subjects from around the world. We wanted to give our readers the information they need to solve specific problems, understanding new technologies, and to be informed about the latest applications in gear design and manufacturing. The premise behind Gear Technology was also a straightforward one: the better informed our readers were about the technology, the more competitive they and their companies would be int he world gear market.

115 Checking Large Gears (March/April 1987)

Gear manufacturing schedules that provide both quality and economy are dependent on efficient quality control techniques with reliable measuring equipment. Given the multitude of possible gear deviations, which can be found only by systematic and detailed measuring of the gear teeth, adequate quality control systems are needed. This is especially true for large gears, on which remachining or rejected workpieces create very high costs. First, observation of the gears allows adjustment of the settings on the equipment right at the beginning of the process and helps to avoid unproductive working cycles. Second, the knowledge of deviations produced on the workpiece helps disclose chance inadequacies on the production side: e.g., faults in the machines and tools used, and provides an opportunity to remedy them.

News Items About gear manufacturing

1 NUM’s Graphical and Conversational Software Compatible with Gear Manufacturing (April 11, 2006)
NUM’s control systems will be displayed at IMTS and are suitable for use in gear manufacturing. The embedded machining cycles for ge... Read News

2 Heller Introduces Gear Manufacturing on Five-Axis Milling Machines (August 2, 2010)
Manufacturers of gear components and bevel gears have been looking for alternatives to traditional manufacturing processes for larger gea... Read News