Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

hard turning - Search Results

Related Companies

Forkardt
Gears extend across all industries. Forkardt, for many years, has provided workholding solutions to the gear industry. Applications we have designed workholding for in the gear industry are hard turning, grinding, and creation of pin plate for holding bevel gears

Erwin Junker Machinery, Inc.

Articles About hard turning


1 Hard Turning Large-Diameter Parts (June 2010)

Fuji's VTP-1000 is designed for highly accurate fine finishing of cylindrical components up to one meter in diameter.

2 Recent Inventions and Innovations in Induction Hardening of Gears and Gear-Like Components (March/April 2013)

This paper examines the expanding capabilities of induction hardening of gears through methods like spin hardening or tooth-by-tooth techniques.

3 Product News (March/April 2013)

The complete Product News section from the March/April 2013 issue of Gear Technology.

4 Fahrenheit 451: Gear Up For Induction Hardening (March/April 1998)

So, you've been assigned the task to buy an induction heating system for heat treating: It's an intimidating, but by no means impossible, assignment. With the help of the information in this article, you could be able to develop common ground with your supplier and have the tools to work with him or her to get the right machine for your jobs.

5 Industry News (May 2013)

The complete Industry News section from the May 2013 issue of Gear Technology

6 Product News (October 2012)

The complete Product News section from the October 2012 issue of Gear Technology.

7 Hardness Testing (May 2013)

This back-to-basics article describes the main methods used for hardness testing of gears: Rockwell, Brinell, Vickers and Knoop.

8 Liebherr's LDF350 Offers Complete Machining in New Dimension (November/December 2011)

The objective, according to Dr.- Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.

9 Hardening Technology Focuses on Dimensional Accuracy (March/April 2014)

New technology from Eldec/EMAG helps control the induction hardening process.

10 High Temperature Gear Materials (November/December 2013)

What gear material is suitable for high-temperature (350 – 550 degree C), high-vacuum, clean-environment use?

11 Product News (October 2013)

The complete Product News section from the October 2013 issue of Gear Technology.

12 Induction Heat Trating: Things Remembered, Things Forgotten (March/April 1997)

Many potential problems are not apparent when using new induction heat treating systems. The operator has been trained properly, and setup parameters are already developed. Everything is fresh in one's mind. But as the equipment ages, personnel changes or new parts are required to be processed on the old equipment ages, personnel changes or new parts are required to b processed on the old equipment, important information can get lost in the shuffle.

13 Gear Hardness Technology (March/April 1992)

In a very general sense, increasing the hardness of a steel gear increases the strength of the gear. However, for each process there is a limit to its effectiveness. This article contains background information on each of the processes covered. In each section what is desired and what is achievable is discussed. Typical processes are presented along with comments on variables which affect the result. By reviewing the capabilities and processes, it is possible to determine the limits to each process.

14 Induction Hardening of Gears and Critical Components - Part I (September/October 2008)

Induction hardening is a heat treating technique that can be used to selectively harden portions of a gear, such as the flanks, roots and tips of teeth, providing improved hardness, wear resistance, and contact fatigue strength without affecting the metallurgy of the core and other parts of the component that don’t require change. This article provides an overview of the process and special considerations for heat treating gears. Part I covers gear materials, desired microsctructure, coil design and tooth-by-tooth induction hardening.

15 Corus New Gear Steels Reduce Alloys Without Sacrificing Achievable Hardness (September/October 2005)

Corus Engineering Steels' formula for its new gear steels: Maintain achievable hardness while using fewer alloys, thereby cutting steel costs for gear manufacturers.

16 The Heat Goes On - Gear Up for Induction Hardening (March/April 2005)

This article covers preventive maintenance and modification to machinery to induction harden different types of gear.

17 Induction Hardening of Gears and Critical Components - Part II (November/December 2008)

Part I, which was published in the September/October 2008 issue, covered gear materials, desired microstructure, coil design and tooth-by-tooth induction hardening. Part II covers spin hardening and various heating concepts used with it.

18 Induction Heat Treating Gains Ground through Advances in Technology (March/April 2011)

In recent years, there has been significant interest in expanding the use of induction hardening in gear manufacturing operations. Over the past several years, many of the limits to induction hardening have shrunk, thanks to recent advances in technology, materials and processing techniques.

19 Controlling Gear Distortion and Residual Stresses During Induction Hardening (March/April 2012)

Induction hardening is widely used in both the automotive and aerospace gear industries to minimize heat treat distortion and obtain favorable compressive residual stresses for improved fatigue performance. The heating process during induction hardening has a significant effect on the quality of the heat-treated parts. However, the quenching process often receives less attention even though it is equally important.

20 The Effects of Surface Hardening on the Total Gear Manufacturing System (January/February 1991)

Carburized and hardened gears have optimum load-carrying capability. There are many alternative ways to produce a hard case on the gear surface. Also, selective direct hardening has some advantages in its ability to be used in the production line, and it is claimed that performance results equivalent to a carburized gear can be obtained. This article examines the alternative ways of carburizing, nitriding, and selective direct hardening, considering equipment, comparative costs, and other factors. The objective must be to obtain the desired quality at the lowest cost.

21 Fundamentals of Bevel Gear Hard Cutting (November/December 1990)

Some years back, most spiral bevel gear sets were produced as cut, case hardened, and lapped. The case hardening process most frequently used was and is case carburizing. Many large gears were flame hardened, nitrided, or through hardened (hardness around 300 BHN) using medium carbon alloy steels, such as 4140, to avoid higher distortions related to the carburizing and hardening process.

22 Hard Cutting - A Competitive Process in High Quality Gear Production (May/June 1987)

The higher load carrying capacities, compact dimensions and longer life of hardened gears is an accepted fact in industry today. However, the costs involved in case hardening and subsequent finishing operations to achieve these advantages are considerable. For example, in order to achieve desired running properties on larger gears, it has been necessary to grind the tooth flanks. This costly operation can now be replaced, in many cases, by a new Hard Cutting (HC) process which permits the cutting of hardened gears while maintaining extremely low tooling costs.

23 Economics of CNC Gear Gashing vs. Large D.P. Hobbing (August/September 1984)

Gear gashing is a gear machining process, very much like gear milling, utilizing the principle of cutting one or more tooth (or tooth space) at a time. The term "GASHING" today applies to the roughing, or roughing and finishing, of coarse diametral pitch gears and sprockets. Manufacturing these large coarse gears by conventional methods of rough and finish hobbing can lead to very long machining cycles and uneconomical machine utilization.

24 Dual Frequency Induction Gear Hardening (March/April 1993)

In the typical gear production facility, machining of gear teeth is followed by hear treatment to harden them. The hardening process often distorts the gear teeth, resulting in reduced and generally variable quality. Heat treating gears can involve many different types of operations, which all have the common purpose of producing a microstructure with certain optimum properties. Dual frequency induction hardening grew from the need to reduce cost while improving the accuracy (minimizing the distortion) of two selective hardening processes: single tooth induction and selective carburizing.

News Items About hard turning

1 EMAG Offers Hard Turning and Grinding Advantages (March 12, 2013)
The advantages of the process combination hard turning + grinding lie in process stream consolidation, improved component quality and gre... Read News