Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

helical gear - Search Results

Related Buyers Guide Categories

Spur & Helical Gear Grinders

Related Companies

Capital Tool Industries
CTI is a long established company producing quality Gear Cutting Tools. We specialize in the manufacture of Gear Hobs, Worm Gear Hobs, Involute Gear Cutters, Gear Shaper Cutters, Gear Shaving Cutters & all types of Milling Cutters.

Comtorgage Corporation
Comtorgage Corporation manufactures a variety of hand-held, indicating gages (analog or digital) designed and built to measure various characteristics of machined, molded, forged, and pressed parts. Comtorgages are intended for use on the shop floor, or in the lab, wherever there is a requirement for frequent, and accurate monitoring of specific dimensions, with or without data collection.

KISSsoft USA LLC
The KISSsoft calculation program has been developed to focus on the needs of mechanical engineers and power transmission profes

Fässler Corporation
Roto-Flo / U.S. Gear Tools
U.S. Gear Tools

Related Power Transmission Categories

Helical Gear Drives
Helical Gears

Related Power Transmission Companies

DieQua Corp.
Thanks for checking us out! Diequa is a manufacturer and supplier of a wide range of premium quality power transmission and motion control gear drive and connecting components designed specifically to enhance the performance of your machine designs. These include speed reducers, gearmotors, servo planetary reducers, spiral bevel gearboxes, shaft phasing gearboxes, shaft couplings, torque limiters, and screw jack lifting systems.

Gleason K2 Plastics
Gleason-K2 Plastics is in the business of plastic gear design and injection molding precision plastic components with a focus on precision plastic gears. Our lights-out automation enables production of the most cost effective, custom molded gears (spur gears, helical gears, bevel gears, planetary gears, internal gears), pulleys, bushings, rotary air motor rotors and vanes, along with plastic nozzle assemblies, at unmatched quality levels

Lafert North America
Your best source for metric motors, gearboxes and coolant pumps, by providing quality products with the highest level of service in the industry.

Midwest Gear & Tool, Inc.
With more than 20 years in gear manufacturing, Midwest Gear & Tool has an elaborate straight and spiral bevel gear manufacturing capability. We also manufacture a complete line of hydraulic, electric and manual transmissions and reducers. We m...

Rush Gears Inc.
Manufacturer of Custom and Standard Industrial Gears. Inch and Metric Gears. Steel Gears, Plastic Gears and Stainless Steel Gears. Spur Gears, Helical Gears, Worm & Worm Gears, Gear Rack, Gear Stock & Pinions, Geared Shafts, Splines & Spline Shaft...

Sterling Instrument
SDP/SI is a major ISO 9001:2000+AS9100B manufacturer offering the largest off-the-shelf selection of precision mechanical drive components available anywhere. Quotes, online orders, available stock, and 3D CAD Model downloads are available at our new eStore at: www.sdp-si.com/eStore...

Taiwan Precision Gear Corp.
TPG is one professional factory who manufactures all kinds motors, gear box, PMDC motor, drive, clutch, brake, coupling, vibration motor, variable speed drive, disco, right angle worm gear, other power transmission parts.

Articles About helical gear


1 Generation of Helical Gears with New Surface Topology by Application of CNC Machines (January/February 1994)

Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.

2 Helical Gear Mathematics, Formulas and Examples Part II (July/August 1988)

The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.

3 Improvement in Load Capacity of Crossed Helical Gears (January/February 1987)

Crossed helical gear sets are used to transmit power and motion between non-intersecting and non-parallel axes. Both of the gears that mesh with each other are involute helical gears, and a point contact is made between them. They can stand a small change in the center distance and the shaft angle without any impairment in the accuracy of transmitting motion.

4 Helical Gear Mathematics Formulas and Examples (May/June 1988)

The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.

5 Determining the Shaper Cut Helical Gear Fillet Profile (September/October 2006)

This article describes a root fillet form calculating method for a helical gear generated with a shaper cutter.

6 Operational Influence on Thermal Behavior of High-Speed Helical Gear Trains (May 2007)

An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied.

7 Computer Aided Design (CAD) of Forging and Extrusion Dies for the Production of Gears by Forming (January/February 1985)

Material losses and long production times are two areas of conventional spur and helical gear manufacturing in which improvements can be made. Metalforming processes have been considered for manufacturing spur and helical gears, but these are costly due to the development times necessary for each new part design. Through a project funded by the U.S. Army Tank - Automotive Command, Battelle's Columbus Division has developed a technique for designing spur and helical gear forging and extrusion dies using computer aided techniques.

8 Grinding of Spur and Helical Gears (July/August 1992)

Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.

9 Longitudinal Load Distribution Factor of Helical Gears (July/August 1985)

The contact lines of a pair of helical gears move diagonally on the engaged tooth faces and their lengths consequently vary with the rotation of the gears.

10 Practical Optimization of Helical Gears Using Computer Software (May/June 1993)

The aim of this article is to show a practical procedure for designing optimum helical gears. The optimization procedure is adapted to technical limitations, and it is focused on real-world cases. To emphasize the applicability of the procedure presented here, the most common optimization techniques are described. Afterwards, a description of some of the functions to be optimized is given, limiting parameters and restrictions are defined, and, finally, a graphic method is described.

11 How Are You Dealing with the Bias Error in Your Helical Gears (May 2009)

This paper initially defines bias error—the “twisted tooth phenomenon.” Using illustrations, we explain that bias error is a by-product of applying conventional, radial crowning methods to produced crowned leads on helical gears. The methods considered are gears that are finished, shaped, shaved, form and generated ground. The paper explains why bias error occurs in these methods and offers techniques used to limit/eliminate bias error. Sometimes, there may be a possibility to apply two methods to eliminate bias error. In those cases, the pros/cons of these methods will be reviewed.

12 Helical Gears With Circular Arc Teeth: Simulation of Conditions of Meshing and Bearing Contact (July/August 1987)

Circular arc helical gears have been proposed by Wildhaber and Novikov (Wildhaber-Novikov gears). These types of gears became very popular in the sixties, and many authors in Russia, Germany, Japan and the People's Republic of China made valuable contributions to this area. The history of their researches can be the subject of a special investigation, and the authors understand that their references cover only a very small part of the bibliography on this topic.

13 Calculation of Optimum Tooth Flank Corrections for Helical Gears (September/October 1988)

The load carrying behavior of gears is strongly influenced by local stress concentrations in the tooth root and by Hertzian pressure peaks in the tooth flanks produced by geometric deviations associated with manufacturing, assembly and deformation processes. The dynamic effects within the mesh are essentially determined by the engagement shock, the parametric excitation and also by the deviant tooth geometry.

14 Controlling Tooth Loads In Helical Gears (March/April 1986)

Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel shafts.

15 Lubricant Jet Flow Phenomena in Spur and Helical Gears (January/February 1987)

In the gearing industry, gears are lubricated and cooled by various methods. At low to moderate speeds and loads, gears may be partly submerged in the lubricant which provides lubrication and cooling by splash lubrication. With splash lubrication, power loss increases considerably with speed. This is partially because of churning losses. It is shown that gear scoring and surface pitting can occur when the gear teeth are not adequately lubricated and cooled.

16 Determining Power Losses in the Helical Gear Mesh (September/October 2005)

This article reviews mathematical models for individual components associated with power losses, such as windage, churning, sliding and rolling friction losses.

17 An Investigation of the Influence of Shaft Misalignment on Bending Stresses of Helical Gears with Lead Crown (November/December 2008)

In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.

18 New Guideless CNC Shaper for Helical Gears (March/April 1998)

Product announcements so often trumpet minor, incremental advances with works like "revolutionary" and "unique" that even the best thesaurus can fail to offer a fresh alternative to alert the reader when something really innovative and important is introduced. In the case of Mitsubishi's new CNC gear shaper, the ST25CNC, both terms apply.

19 Gear Tooth Scoring Design Considerations for Spur and Helical Gearing (May/June 1985)

High speed gearing, operating with low viscosity lubricants, is prone to a failure mode called scoring. In contrast to the classic failure modes, pitting and breakage, which generally take time to develop, scoring occurs early in the operation of a gear set and can be the limiting factor in the gear's power capability.

20 Design of Internal Helical Gears (March/April 1989)

In principal, the design of internal helical gear teeth is the same as that for external helical gears. Any of the basic rack forms used for external helical gears may be applied to internal helical gears. The internal gear drive, however, has several limitations; not only all those which apply to external gears, but also several others which are peculiar to internal gears. As with external gears, in order to secure effective tooth action, interferences must be avoided. The possible interferences on an internal gear drive are as follows: 1. Involute interference. To avoid this, all of the working profile of the internal tooth must be of involute form.

21 Longitudinal Tooth Contact Pattern Shift (May 2012)

After a period of operation, high-speed turbo gears may exhibit a change in longitudinal tooth contact pattern, reducing full face width contact and thereby increasing risk of tooth distress due to the decreased loaded area of the teeth. But this can be tricky—the phenomenon may or may not occur. Or, in some units the shift is more severe than others, with documented cases in which shifting occurred after as little as 16,000 hours of operation. In other cases, there is no evidence of any change for units in operation for more than 170,000 hours. This condition exists primarily in helical gears. All recorded observations here have been with case-carburized and ground gear sets. This presentation describes phenomena observed in a limited sampling of the countless high-speed gear units in field operation. While the authors found no existing literature describing this behavior, further investigation suggests a possible cause. Left unchecked and without corrective action, this occurrence may result in tooth breakage.

22 A Rational Procedure for Designing Minimum-Weight Gears (November/December 1991)

A simple, closed-form procedure is presented for designing minimum-weight spur and helical gearsets. The procedure includes methods for optimizing addendum modification for maximum pitting and wear resistance, bending strength, or scuffing resistance.

23 The Geometry of Helical Mesh (September/October 1997)

In 1961 I presented a paper, "Calculating Conjugate Helical Forms," at the semi-annual meeting of the American Gear Manufacturers Association (AGMA). Since that time, thousands of hobs, shaper cutters and other meshing parts have been designed on the basis of the equations presented in that paper. This article presents the math of that paper without the formality of its development and goes on to discuss its practical application.

24 Influence of Gear Design on Gearbox Radiated Noise (January/February 1998)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.

25 Transmission Errors and Bearing Contact of Spur, Helical, and Spiral Bevel Gears (July/August 1990)

An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.

26 Gear Finishing with a Nylon Lap (September/October 2005)

The objective of this research is to develop a new lapping process that can efficiently make tooth flanks of hardened steel gears smooth as a mirror.

27 Gear Grinding Techniques Parallel Axes Gears (March/April 1985)

The fundamental purpose of gear grinding is to consistently and economically produce "hard" or "soft" gear tooth elements within the accuracy required by the gear functions. These gear elements include tooth profile, tooth spacing, lead or parallelism, axial profile, pitch line runout, surface finish, root fillet profile, and other gear geometry which contribute to the performance of a gear train.

28 Gears for Nonparallel Shafts (September/October 1986)

Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.

29 Low Vibration Design on A Helical Gear Pair (January/February 2000)

Helical gear pairs with narrow face width can be theoretically classified into three categories over the contact ration domain whose abscissa is the transverse contact ration and whose ordinate is the overlap contact ratio. There is a direct relation between vibration magnitude and shaft parallelism deviation. To clarify the effect of the tooth deviation types on the vibration behavior of helical gear pairs, performance diagrams on vibration are introduced. the acceleration levels of gear pairs are shown by contour lines on the contact ratio domain. Finally, the performance of gears with bias-in and bias-out modifications is discussed considering the effect of the shaft parallelism deviation with use of the developed simulator on a helical gear unit. It becomes clear that there is an asymmetrical feature on the relation between the vibration magnitude of a gear pair and the direction of each deviation.

30 Predicted Scuffing Risk to Spur and Helical Gears in Commercial Vehicle Transmissions (November/December 2012)

AGMA925–A03 scuffing risk predictions for a series of spur and helical gear sets of transmissions used in commercial vehicles ranging from SAE Class 3 through Class 8.

31 Predicting the Heat-Treat Response of a Carburized Helical Gear (November/December 2002)

Using the DANTE software, a finite element simulation was developed and executed to study the response of a carburized 5120 steel helical gear to quenching in molten salt. The computer simulation included heat-up, carburization, transfer and immersion in a molten salt bath, quenching, and air cooling. The results of the simulation included carbon distribution of phases, dimensional change, hardness, and residual stress throughout the process. The predicted results were compared against measured results for hardness, dimensions and residual stress. The excellent agreement between predictions and measured values for this carburized 5120 steel gear provides a basis for assessing the various process parameters and their respective importance in the characteristics of not only these heat-treated parts, but of other compositions and shapes.

32 Operational Condition and Superfinishing Effect on High-Speed Helical Gearing System Performance (March/April 2008)

An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system. Test results from the parametric studies and the superfinishing process are presented.

33 Systematic Approach to Desinging Plastic Spur and Helical Gears (November/December 1989)

Plastic gears are being used increasingly in applications, such as printers, cameras, small household appliances, small power tools, instruments, timers, counters and various other products. Because of the many variables involved, an engineer who designs gear trains on an occasional basis may find the design process to be somewhat overwhelming. This article outlines a systematic design approach for developing injection molded plastic spur and helical gears. The use of a computer program for designing plastic gears is introduced as an invaluable design tool for solving complex gearing equations.

34 Base Pitch Tables (September/October 1992)

There is one dimension common to both members of a pair of properly mating spur gears - the base pitch (BP). This base pitch is equal to the circular pitch of the gear on the base circle (see Fig. 1). For a helical gear, the base pitch can be described in either the transverse or normal plane, and is called the transverse base pitch (TBP) or normal base pitch (NBP), respectively. For parallel axis helical gears, both the TBP and NBP must be the same on both mating gears. For skew axis helical gears, only the NBP must be common.

35 Pitting Load Capacity of Helical Gears (May 2008)

Influences of Load Distribution and Tooth Flank Modifications as Considered in a New, DIN/ISO-Compatible Calculation Method

36 Finish Hobbing Crowned Helical Gears without Twist (January/February 2006)

New tool from LMT-Fette provides combination of operations.

37 New Approach to Computerized Design of Spur and Helical Gears (January/February 2005)

Applying "Dynamic Block Contours" allows the designer to predict gear quality at the earliest stage of the design process.

38 Tooth Flank Corrections of Wide Face Width Helical Gears that Account for Shaft Deflections (January/February 2005)

This paper discusses the influence of tip relief, root relief, load modification, end relief and their combinations on gear stresses and transmission errors due to shaft deflections.

39 Failures of Bevel-Helical Gear Units on Traveling Bridge Cranes (November/December 2000)

Bridge cranes are among the most useful machines in many branches of modern industry. Using standard hooks or other specialized clamping devices, they can lift, transport, discharge, and stack a variety of loads.

40 Gear Generating Using Rack Cutters (October/November 1984)

Universal machines capable of cutting both spur and helical gears were developed in 1910, followed later by machines capable of cutting double helical gears with continuous teeth. Following the initial success, the machines were further developed both in England and France under the name Sunderland, and later in Switzerland under the name Maag.

41 Load Carrying Capacity of Screw Helical Gears with Steel Pinions and Plastic Wheels (July/August 2004)

There is an increasing significance of screw helical and worm gears that combine use of steel and plastics. This is shown by diverse and continuously rising use in the automotive and household appliance industries. The increasing requirements for such gears can be explained by the advantageous qualities of such a material combination in comparison with that of the traditional steel/bronze pairing.

42 A Model of the Pumping Action Between the Teeth of High-Speed Spur and Helical Gears (May/June 2004)

For a high-speed gearbox, an important part of power losses is due to the mesh. A global estimation is not possible and an analytical approach is necessary with evaluations of three different origins of power losses: friction in mesh contact, gear windage and pumping effect between teeth.

43 Calculating Spur and Helical Gear Capacity with ISO 6336 (November/December 1998)

This is the third article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are htose of the author as an individual. They do not represent the opinions of any organization of which he is a member.

44 Hobbing Precise, Uniform End Chamfers (March/April 2004)

The seemingly simple process of placing a uniform chamfer on the face ends of spur and helical gears, at least for the aerospace industry, has never been a satisfactory or cost effective process.

45 Tips for Increasing Power Density in Gear Trains (May/June 1999)

Gear designers today are continually challenged to provide more power in less space and improve gear performance. The following article looks at some of the most common ways to increase the power density or improve the performance of gear trains. The author also takes an in-depth look at the case of a steel worm mating with a plastic helical gear and explores ways to optimize this increasingly common configuration.

46 Hard Gear Finishing With CBN-Basic Considerations (May/June 1998)

For over 50 years, grinding has been an accepted method of choice for improving the quality of gears and other parts by correcting heat treat distortions. Gears with quality levels better than AGMA 10-11 or DIN 6-7 are hard finished, usually by grinding. Other applications for grinding include, but are not limited to, internal/external and spur/helical gear and spline forms, radius forms, threads and serrations, compressor rotors, gerotors, ball screw tracks, worms, linear ball tracks, rotary pistons, vane pump rotators, vane slots, and pump spindles.

47 Ten Myths About Gear Lubrication (May/June 1995)

Myth No. 1: Oil Is Oil. Using the wrong oil is a common cause of gear failure. Gears require lubricants blended specifically for the application. For example, slow-speed spur gears, high-speed helical gears, hypoid gears and worm gears all require different lubricants. Application parameters, such as operating speeds, transmitted loads, temperature extremes and contamination risks, must be considered when choosing an oil. Using the right oil can improve efficiency and extend gear life.

48 Gear Oil Micropitting Evaluation (September/October 2000)

During the last decade, industrial gear manufacturers, particularly in Europe, began to require documentation of micropitting performance before approving a gear oil for use in their equipment. The development of micropitting resistant lubricants has been limited both by a lack of understanding of the mechanism by which certain lubricant chemistry promotes micropitting and by a lack of readily available testing for evaluation of the micropitting resistance of lubricants. This paper reports results of two types of testing: (1) the use of a roller disk machine to conduct small scale laboratory studies of the effects of individual additives and combinations of additives on micropitting and (2) a helical gear test used to study micropitting performance of formulated gear oils.

49 Powder Metal Gear Design and Inspection (September/October 1996)

Powder metallurgy (P/M) is a precision metal forming technology for the manufacture of parts to net or near-net shape, and it is particularly well-suited to the production of gears. Spur, bevel and helical gears all may be made by made by powder metallurgy processing.

50 Net-Shape Forged Gears - The State of the Art (January/February 2002)

Traditionally, high-quality gears are cut to shape from forged blanks. Great accuracy can be obtained through shaving and grinding of tooth forms, enhancing the power capacity, life and quietness of geared power transmissions. In the 1950s, a process was developed for forging gears with teeth that requires little or no metal to be removed to achieve final geometry. The initial process development was undertaken in Germany for the manufacture of bevel gears for automobile differentials and was stimulated by the lack of available gear cutting equipment at that time. Later attention has turned to the forging of spur and helical gears, which are more difficult to form due to the radial disposition of their teeth compared with bevel gears. The main driver of these developments, in common with most component manufacturing, is cost. Forming gears rather than cutting them results in increased yield from raw material and also can increase productivity. Forging gears is therefore of greater advantage for large batch quantities, such as required by the automotive industry.

51 How to Design and Install Bevel Gears for Optimum Performance - Lessons Learned (June/July 2013)

Bevel gears must be assembled in a specific way to ensure smooth running and optimum load distribution between gears. While it is certainly true that the "setting" or "laying out" of a pair of bevel gears is more complicated than laying out a pair of spur gears, it is also true that following the correct procedure can make the task much easier. You cannot install bevel gears in the same manner as spur and helical gears and expect them to behave and perform as well; to optimize the performance of any two bevel gears, the gears must be positioned together so that they run smoothly without binding and/or excessive backlash.

52 Lubrication Specification and Methodology (September 2013)

A reader asks about how to specify a method of lubrication for a speed reducer with a three-stage helical gear with a low peripheral speed.

53 On a Possible Way of Size and Weight Reduction of a Car Transmission (July/August 2003)

Almost any external tooth form that is uniformly spaced around a center can be hobbed. Hobbing is recognized as an economical means of producing spur and helical gears with involute tooth profiles.

54 Characterizaton of Retained Austenite in Case Carburized Gears and Its Influence on Fatigue Performance (May/June 2003)

Carburized helical gears with high retained austenite were tested for surface contact fatigue. The retained austenite before test was 60% and was associated with low hardness near the case's surface. However, the tested gears showed good pitting resistance, with fatigue strength greater than 1,380 MPa.

55 Technology Tidbits (January/February 2002)

New Technique for Forging Crowned Helical Gears Createch Co. Ltd., a forging die manufacturer from Shizuoka, Japan, has developed a net-shape cold-forging process for forming helical gears and splines with crowned teeth.

56 Measuring Base Helix Error on a Sine Bar (July/August 2001)

Base helix error - the resultant of lead and profile errors is the measured deviation from the theoretical line of contact (Fig. 1). It can be measured in the same way that lead error on a spur gear is measured, namely, by setting a height gage to height H based on the radial distance r to a specified line of contact (Fig. 2), rotating the gear so as to bring a tooth into contact with the indicator on the height gage, and then moving the height gage along two or more normals to the plane of action. The theoretical line of contact on helical gear must be parallel to the surface plate, which is attained by mounting the gear on a sine bar (Fig. 3).

57 AGMA, ISO, and BS Gear Standards Part I - Pitting Resistance Ratings (November/December 1990)

A study of AGMA 218, the draft ISO standard 6336, and BS 436: 1986 methods for rating gear tooth strength and surface durability for metallic spur and helical gears is presented. A comparison of the standards mainly focuses on fundamental formulae and influence factors, such as the load distribution factor, geometry factor, and others. No attempt is made to qualify or judge the standards other than to comment on the facilities or lack of them in each standard reviewed. In Part I a comparison of pitting resistance ratings is made, and in the subsequent issue, Part II will deal with bending stress ratings and comparisons of designs.

58 Gear Finishing by Shaving, Rolling and Honing, Part I (March/April 1992)

There are several methods available for improving the quality of spur and helical gears following the standard roughing operations of hobbing or shaping. Rotary gear shaving and roll-finishing are done in the green or soft state prior to heat treating.

59 Beveloid & Hypoloid Gears (May 2011)

Beveloids are helical gears with nonparallel shafts, with shaft angles generally between 5 degrees and 15 degrees. This is part VI in the Tribology Aspects in Angular Transmission Systems Series

60 Innovative Analysis and Documentation of Gear Test Results (September/October 2008)

In this paper, a method is presented for analyzing and documenting the pitting failure of spur and helical gears through digital photography and automatic computerized evaluation of the damaged tooth fl ank surface. The authors have developed an accurate, cost-effective testing procedure that provides an alternative to vibration analysis or oil debris methods commonly used in conjunction with similar test-rig programs.

61 Optimal Choice of the Shaft Angle for Involute Gear Hobbing (November/December 2007)

With reference to the machining of an involute spur or helical gear by the hobbing process, this paper suggests a new criterion for selecting the position of the hob axis relative to the gear axis.

62 Extending the Benefits of Elemental Gear Inspection (July 2009)

It may not be widely recognized that most of the inspection data supplied by inspection equipment, following the practices of AGMA Standard 2015 and similar standards, are not of elemental accuracy deviations but of some form of composite deviations. This paper demonstrates the validity of this “composite” label by first defining the nature of a true elemental deviation and then, by referring to earlier literature, demonstrating how the common inspection practices for involute, lead (on helical gears), pitch, and, in some cases, total accumulated pitch, constitute composite measurements.

63 Flank Breakage on Gears for Energy Systems (November/December 2011)

Gear flank breakage can be observed on edge zone-hardened gears. It occurs, for example, on bevel gears for water turbines, on spur gears for wind energy converters and on single- and double-helical gears for other industrial applications.

64 Functions of Gearing and Application of the Involute to Gear Teeth (August/September 1984)

Experience has proven that the involute provides the most satisfactory profile for spur and helical gear teeth, and fulfills the requirements for transmitting smooth, uniform angular motion.

65 Computer Aided Design for Gear Shaper Cutters (November/December 1987)

Computer programs have been developed to completely design spur and helical gear shaper cutters starting from the specifications of the gear to be cut and the type of gear shaper to be used. The programs generate the working drawing of the cutter and, through the use of a precision plotter, generate enlarge scaled layouts of the gear as produced by the cutter and any other layouts needed for its manufacture.

66 The Effect of Reverse Hobbing at a High Speed (March/April 1987)

Today it is common practice when climb hobbing to keep the direction of the hob thread the same as that of the helical gear. The same generalization holds true for the mass production of gears for automobiles. It is the authors' opinion, however, that conventional hobbing with a reverse-handed hob is more effective for the high-speed manufacture of comparatively small module gears for automobiles. The authors have proven both experimentally and theoretically that reverse-handed conventional hobbing, using a multi-thread hob with a smaller diameter is very effective for lengthening the life of the hob and for increasing cutting efficiency at high speeds.

67 Optimum Number of Teeth for Span Measurement (May/June 1984)

An expression is derived, giving the optimum number of teeth over which the span measurement should be made, for profile-shifted spur and helical gears.

68 Deburring & Finishing Gears with Power Brushes (March/April 1989)

Why Brushes? In this age of hi-tech, robots, automatic machines, machining cells, etc., is there a niche somewhere for power brushes? Let me answer by asking another question. What tool does the gear manufacturer have in his arsenal that allows him to deburr green gears, hardened gears, hobbed gears, ground gears and shaved gears? What tool allows him to deburr powder metal gears - green and sintered - brass gears, bronze gears, stainless gears made of exotic materials such as inconel, waspaloy, or hastaloy, and fiber and plastic gears? How about spur gears, helical gears, sprockets, both internal and external splines, clutch teeth and pump gears?

69 Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions (November/December 2005)

Conical involute gears (beveloids) are used in transmissions with intersecting or skewed axes and for backlash-free transmissions with parallel axes.

70 Introduction to ISO 6336 What Gear Manufacturers Need to Know (July/August 1998)

ISO 6336 Calculation of Load Capacity of Spur and Helical Gears was published in 1997 after 50 years of effort by an international committee of experts whose work spanned three generations of gear technology development. It was a difficult compromise between the existing national standards to get a single standard published which will be the basis for future work. Many of the compromises added complication to the 1987 edition of DIN 3990, which was the basic document.

News Items About helical gear

1 Ondrives Launches Crossed Helical Gears (April 2, 2010)
A precision range of crossed helical gears was released from Ondrives Ltd. These 45 degree crossed helical gears have already been specia... Read News

2 KISSsoft Offers Fine Sizing for Worm Wheels and Crossed Helical Gears (September 25, 2013)
For the calculation of worm wheels and crossed helical gears, fine sizing modules are now available (module ZD5 and ZE6). The KISSsoft fi... Read News

3 Gleason’s New Threaded Grinder Optimizes Fine Finishing of Hard Spur and Helical Gears (January 2, 2007)
Gleason’s new Genesis 130TWG High Speed Threaded Wheel Grinder features a new design that reduces floor space requirements and impro... Read News

4 Luren's LFG-8040 Grinds Spur and Helical Gears (January 19, 2011)
The most recent development from Luren Precision Co., Ltd. is the vertical type CNC gear profile grinding machine, LFG-8040, th... Read News