Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

helicoid - Search Results

Articles About helicoid

1 The Involute Helicoid and The Universal Gear (November/December 1990)

A universal gear is one generated by a common rack on a cylindrical, conical, or planar surface, and whose teeth can be oriented parallel or skewed, centered, or offset, with respect to its axes. Mating gear axes can be parallel or crossed, non-intersecting or intersecting, skewed or parallel, and can have any angular orientation (See Fig.1) The taper gear is a universal gear. It provides unique geometric properties and a range of applications unmatched by any other motion transmission element. (See Fig.2) The taper gear can be produced by any rack-type tool generator or hobbing machine which has a means of tilting the cutter or work axis and/or coordinating simultaneous traverse and infeed motions.

2 Definition and Inspection of Profile and Lead of a Worm Wheel (November/December 1999)

Traditionally, profile and lead inspections have been indispensable portions of a standard inspection of an involute gear. This also holds true for the worm of a worm gear drive (Ref. 1). But the inspection of the profile and the lead is rarely performed on a worm wheel. One of the main reasons is our inability to make good definitions of these two elements (profile and lead) for the worm wheel. Several researchers have proposed methods for profile and lead inspections of a worm wheel using CNC machines or regular involute and lead inspections of a worm wheel using CNC machines or regular involute measuring machines. Hu and Pennell measured a worm wheel's profile in an "involute" section and the lead on the "pitch" cylinder (Ref. 2). This method is applicable to a convolute helicoid worm drive with a crossing angle of 90 degrees because the wheel profile in one of the offset axial planes is rectilinear. This straight profile generates an involute on the generated worm wheel. Unfortunately, because of the hob oversize, the crossing angle between the hob and the worm wheel always deviates from 90 degrees by the swivel angle. Thus, this method can be implemented only approximately by ignoring the swivel angle. Another shortcoming of this method is that there is only one profile and one lead on each flank. If the scanned points deviated from this curve, it produced unreal profile deviation. Octrue discussed profile inspection using a profile checking machine (Ref. 3).

3 The Basics of Gear Metrology and Terminology Part I (September/October 1998)

It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.