Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

high pressure carburizing - Search Results

Articles About high pressure carburizing


1 Low Pressure Carburizing of Large Transmission Parts (September/October 2009)

Often, the required hardness qualities of parts manufactured from steel can only be obtained through suitable heat treatment. In transmission manufacturing, the case hardening process is commonly used to produce parts with a hard and wear-resistant surface and an adequate toughness in the core. A tremendous potential for rationalization, which is only partially used, becomes available if the treatment time of the case hardening process is reduced. Low pressure carburizing (LPC) offers a reduction of treatment time in comparison to conventional gas carburizing because of the high carbon mass flow inherent to the process (Ref. 1).

2 Low-Distortion Heat Treatment of Transmission Components (October 2011)

This paper presents how low pressure carburizing and high pressure gas quenching processes are successfully applied on internal ring gears for a six-speed automatic transmission. The specific challenge in the heat treat process was to reduce distortion in such a way that subsequent machining operations are entirely eliminated.

3 Low Pressure Carburizing with High Pressure Gas Quenching (March/April 2004)

High demands for cost-effectiveness and improved product quality can be achieved via a new low pressure carburizing process with high pressure gas quenching. Up to 50% of the heat treatment time can be saved. Furthermore, the distortion of the gear parts could be reduced because of gas quenching, and grinding costs could be saved. This article gives an overview of the principles of the process technology and the required furnace technology. Also, some examples of practical applications are presented.

4 High Temperature Gear Materials (November/December 2013)

What gear material is suitable for high-temperature (350 – 550 degree C), high-vacuum, clean-environment use?

5 Vacuum Carburizing Takes Center Stage (July 2008)

ALD-Holcroft Vacuum Technologies Co. will host a two-day technical symposium at the Henry Ford Museum in Dearborn, Michigan September 23– 24, 2008.

6 Systematic Investigations on the Influence of Case Depth on the Pitting and Bending Strength of Case Carburized Gears (July/August 2005)

The gear designer needs to know how to determine an appropriate case depth for a gear application in order to guarantee the required load capacity.

7 Distortion Control by Innovative Heat Treating Technologies in the Automotive Industry (August 2008)

The proper control of distortion after thermal treatment of powertrain components in the automotive industry is an important measure in ensuring high-quality parts and minimizing subsequent hard machining processes in order to reduce overall production costs.

8 The Effects of Pre-Rough Machine Processing on Dimensional Distortion During Carburizing (September/October 2006)

A study was conducted to isolate the influence of pre-rough machine processing on final dimensional distortion.

9 New Vacuum Processes (August 2007)

This paper introduces new process developments in low-pressure carburizing and carbonitriding using either high-pressure gas quenching or interrupted gas quenching.

10 Shorter Cycle Times for Carburizing (March/April 2006)

Dana Corp. is developing a process that carburizes a straight bevel gear to a carbon content of 0.8% in 60 fewer minutes than atmosphere carburizing did with an identical straight bevel.

11 The Staying Power of Low-Pressure Carburizing (September/October 2008)

Open any heat treating journal today and you’re certain to find multiple references (articles, technical papers and/or advertisements) promoting low-pressure carburizing (LPC). The uninformed might breeze by these references thinking it’s the next flash-in-the-pan, but unlike in the past, this time the process has legs.

12 Events (January/February 2005)

The complete Events section from January/February 2005, including coverage of a vacuum carburizing conference.

13 Why Vacuum Carburizing (March/April 2010)

Heat treat alternative offers advantages over conventional methods.

14 How to Carburize a Finished Gear (March/April 1995)

Precise heat treatment plays an essential role in the production of quality carburized gears. Seemingly minor changes in the heat treating process can have significant effects on the quality, expense and production time of a gear, as we will demonstrate using a case study from one of our customer's gears.

15 Minimizing Gear Distortion During Heat Treating (March/April 1996)

Graded hardening technology has proven over the years to yield very good results when used in the heat treating of carburized gears. It is especially advantageous for smaller companies, subject to higher competitive pressures. Unfortunately, despite the fact that graded hardening is a very well-known method, its use has been limited. We strongly recommend this technology to all of those who need to produce gears with high metallurgical quality.

16 The Effect of Metallurgy on the Performance of Carburized Gears (March/April 1996)

Gears are designed to be manufactured, processed and used without failure throughout the design life of the gear. One of INFAC's objectives (*see p.24) is to help manufacture of gears to optimize performance and life. One way to achieve this is to identify failure mechanisms and then devise strategies to overcome them by modifying the manufacturing parameters.

17 New-Formula Acetylene Cool for Heat Treatment (September 2013)

Acetylene with DMF solvent enables benefits of low-pressure vacuum carburizing.

18 Controlling Carburizing for Top Quality Gears (March/April 1993)

A carburized alloy steel gear has the greatest load-carrying capacity, but only if it is heat treated properly. For high quality carburizing, the case depth, case microstructure, and case hardness must be controlled carefully.

19 Gear Hardness Technology (March/April 1992)

In a very general sense, increasing the hardness of a steel gear increases the strength of the gear. However, for each process there is a limit to its effectiveness. This article contains background information on each of the processes covered. In each section what is desired and what is achievable is discussed. Typical processes are presented along with comments on variables which affect the result. By reviewing the capabilities and processes, it is possible to determine the limits to each process.

20 Selection of Material and Compatible Heat Treatments for Gearing (May/June 1986)

The manufacturing process to produce a gear essentially consist of: material selection, blank preshaping, tooth shaping, heat treatment, and final shaping. Only by carefully integrating of the various operations into a complete manufacturing system can an optimum gear be obtained. The final application of the gear will determine what strength characteristics will be required which subsequently determine the material and heat treatments.

21 Achievable Carburizing Specifications (January/February 1990)

A widespread weakness of gear drawings is the requirements called out for carburize heat treating operations. The use of heat treating specifications is a recommended solution to this problem. First of all, these specifications guide the designer to a proper callout. Secondly, they insure that certain metallurgical characteristics, and even to some extent processing, will be obtained to provide the required qualities in the hardened gear. A suggested structure of carburizing specifications is give.

22 The Effects of Surface Hardening on the Total Gear Manufacturing System (January/February 1991)

Carburized and hardened gears have optimum load-carrying capability. There are many alternative ways to produce a hard case on the gear surface. Also, selective direct hardening has some advantages in its ability to be used in the production line, and it is claimed that performance results equivalent to a carburized gear can be obtained. This article examines the alternative ways of carburizing, nitriding, and selective direct hardening, considering equipment, comparative costs, and other factors. The objective must be to obtain the desired quality at the lowest cost.

23 Evaluation of Bending Strength of Carburized Gears (May/June 2004)

The aim of our research is to clearly show the influence of defects on the bending fatigue strength of gear teeth. Carburized gears have many types of defects, such as non-martensitic layers, inclusions, tool marks, etc. It is well known that high strength gear teeth break from defects in their materials, so it’s important to know which defect limits the strength of a gear.

24 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part I (March/April 1987)

The load capacity rating of gears had its beginning in the 18th century at Leiden University when Prof. Pieter van Musschenbroek systematically tested the wooden teeth of windmill gears, applying the bending strength formula published by Galilei one century earlier. In the next centuries several scientists improved or extended the formula, and recently a Draft International Standard could be presented.

25 A Model of the Pumping Action Between the Teeth of High-Speed Spur and Helical Gears (May/June 2004)

For a high-speed gearbox, an important part of power losses is due to the mesh. A global estimation is not possible and an analytical approach is necessary with evaluations of three different origins of power losses: friction in mesh contact, gear windage and pumping effect between teeth.

26 A Further Study on High-Contact-Ratio Spur Gears in Mesh with Double-Scope Tooth Profile Modification (November/December 2008)

This paper will demonstrate that, unlike commonly used low-contact-ratio spur gears, high-contact-ratio spur gears can provide higher power-to-weight ratio, and can also achieve smoother running with lower transmission error (TE) variations.

27 High Speed Gears (September/October 2007)

Above all, a gear is not just a mechanical transmission, but is developed to a system fulfilling multiple demands, such as clutch integration, selectable output speeds, and controls of highest electronic standards. This paper shows the basics for high-speed gear design and a selection of numerous applications in detailed design and operational needs.

28 Cutting Gears on a Machining Center (November/December 2009)

Depo provides all-in-one machining capabilities for the gear industry.

29 High Speed Steel: Different Grades for Different Requirements (September/October 2004)

Hobs, broaches, shaper cutters, shaver cutters, milling cutters, and bevel cutters used in the manufacture of gears are commonly made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.

30 Experience with Large, High-Speed Load Gears (July 2007)

The main theme of this article is high-capacity, high-speed load gears in a power transmission range between 35 MW and 100 MW for generators and turbo-compressors driven by gas or steam turbines.

31 New Potentials in Carbide Hobbing (January/February 2004)

To meet the future goals of higher productivity and lower production costs, the cutting speeds and feeds in modern gear hobbing applications have to increase further. In several cases, coated carbide tools have replaced the commonly used high speed steel (HSS) tools.

32 Ask the Expert: High Ratio Hypoid Gear Efficiency (May 2012)

Our question this issue deals with high-ratio hypoid gears, and it should be noted here that this is a tricky area of gearing with a dearth of literature on the topic. That being the case, finding “experts” willing to stick their necks out and take on the subject was not a given.

33 HMC Lassos World's Largest Gear Grinder (June 2008)

Hofler Rapid 6000 Makes North American Debut at Highway Machine Company.

34 Load Sharing Analysis of High-Contact-Ratio Spur Gears in Military Tracked Vehicle Applications (July 2010)

This paper deals with analysis of the load sharing percentage between teeth in mesh for different load conditions throughout the profile for both sun and planet gears of normal and HCR gearing—using finite element analysis. (FEA).

35 Off-Highway Gears (June/July 2013)

Market needs push in 2013, but will it get one? The construction/off-highway industries have been here before. New equipment, technologies and innovations during an economic standstill that some have been dealing with since 2007.

36 Riding the Rails (November/December 2013)

Are trains still a growth industry prospect for manufacturers?

37 Operating Pressure Angle (May 2013)

What is the difference between pressure angle and operating pressure angle?

38 Influence of Gear Design on Gearbox Radiated Noise (January/February 1998)

A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.

39 High Speed Hobbing of Gears With Shifted Profiles (July/August 1988)

The newer profile-shifted (long and short addendum) gears are often used as small size reduction gears for automobiles or motorcycles. The authors have investigated the damage to each cutting edge when small size mass-produced gears with shifted profiles are used at high speeds.

40 Super-Reduction Hypoid Gears (August 2011)

Super-reduction hypoid gears (SRH) are bevel worm gears with certain differences regarding hypoid gears. If two axes are positioned in space and the task is to transmit motion and torque between them using some kind of gears with a ratio above 5 and even higher than 50, the following cases are commonly known. Tribology Aspects in Angular Transmission Systems, Part VIII.

41 Practical Analysis of Highly-Loaded Gears by Using the Modified-Scoring Index Calculation Method (September/October 1986)

The power of high speed gears for use in the petrochemical industry and power stations is always increasing. Today gears with ratings of up to 70,000kW are already in service. For such gears, the failure mode of scoring can become the limiting constraint. The validity of an analytical method to predict scoring resistance is, therefore, becoming increasingly important.

42 Grinding Induced Changes in Residual Stresses of Carburized Gears (March/April 2009)

This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory.