hob basics - Search Results

Articles About hob basics


Articles are sorted by RELEVANCE. Sort by Date.

1 How Gear Hobbing Works (March/April 2013)

Hobbing is one of the most fundamental processes in gear manufacturing. Its productivity and versatility make hobbing the gear manufacturing method of choice for a majority of spur and helical gears.

2 Hob Basics Part I (September/October 1993)

The Hobbing Process The hobbing process involves a hob which is threaded with a lead and is rotated in conjunction with the gear blank at a ratio dependent upon the number of teeth to be cut. A single thread hob cutting a 40-tooth gear will make 40 revolutions for each revolution of the gear. The cutting action in hobbing is continuous, and the teeth are formed in one passage of the hob through the blank. See Fig. 1 for a drawing of a typical hob with some common nomenclature.

3 Hob Basics Part II (November/December 1993)

This is Part II of a two-part series on the basics of gear hobbing. Part I discussed selection of the correct type of hobbing operation, the design features of hobs and hob accuracy. This part will cover sharpening errors and finish hob design considerations.

4 The Gear Hobbing Process (January/February 1994)

Gear hobbing is a generating process. The term generating refers to the fact that the gear tooth form cut is not the conjugate form of the cutting tool, the hob. During hobbing both the hob and the workpiece rotate in a continuous rotational relationship. During this rotation, the hob is typically fed axially with all the teeth being gradually formed as the tool traverses the work face (see Fig. 1a).

5 Advantages of Titanium Nitride Coated Gear Tools (May/June 1984)

A brief introduction to the subject of Thin Film Coatings and their application to gear hobs and shaper cutters is followed by a detailed description of the Chemical Vapor Deposition Process and the Physical Vapor Deposition Process. Advantages and disadvantages of each of these processes is discussed. Emphasis is placed upon: application engineering of coated gear tools based on laboratory and field test results. Recommendations are suggested for tool design improvements and optimization of gear cutting operations using coated tools. Productivity improvements potentially available by properly utilizing coated tools are considered in terms of both tool cost and machining cost.

6 Effects of Hob Quality and Resharpening Errors on Generating Accuracy (September/October 1987)

The modern day requirement for precision finished hobbed gears, coupled with the high accuracy characteristics of modern CNC hobbing machines, demands high tool accuracy.

7 Cutting Low-Pitch-Angle Bevel Gears, Worm Gears and The Oil Entry Gap (July/August 1992)

Question: Do machines exist that are capable of cutting bevel gear teeth on a gear of the following specifications: 14 teeth, 1" circular pitch, 14.5 degrees pressure angle, 4 degrees pitch cone angle, 27.5" cone distance, and an 2.5" face width?

8 Carbide Hobs (May/June 1991)

The following article is a collection of data intended to give the reader a general overview of information related to a relatively new subject within the gear cutting industry. Although carbide hobbing itself is not necessarily new, some of the methods and types of application are. While the subject content of this article may be quite broad, it should not be considered all-inclusive. The actual results obtained and the speeds, feeds, and tool life used in carbide hobbing applications can vary significantly.

9 Pineapples, Corncobs & Other Hobbing Matters (July/August 1991)

Two questions on hobbing cover the various types of hobs and their unusual names, as well as the importance of hob swivel angle.

10 The Right and Wrong of Modern Hob Sharpening (January/February 1992)

Precision gears play a vital role in today's economy. Through their application, automobile transmissions are more compact and efficient, ships sail faster, and diesel locomotives haul more freight. Today great emphasis is being placed upon the reduction of noise in all gear applications and, to be quiet, gears must be accurate.

11 Our Experts Discuss Hobbing Ridges, Crooked Gear Teeth, and Crown Shaving (March/April 1992)

Question: When cutting worm gears with multiple lead stock hobs we find the surface is "ridged". What can be done to eliminate this appearance or is to unavoidable?

12 Cutting Worm Gears with Standard Gear Hobs (January/February 1994)

We make a lot of single-start worm and worm gear sets, and it always seems as though we're buying another special hob. We also do a lot of spur gear cutting, and the spur gear hobs and the worm gear hobs look alike, so we wonder why we cannot use the standard hobs for cutting worm gears too. Can we do this?

13 Dry Gear Hobbing (July/August 1995)

Question: We are contemplating purchasing a hobbing machine with dry hobbing capabilities. What do we need to know about the special system requirements for this technology?

14 Gear Manufacturing Methods - Forming the Teeth (January/February 1987)

The forming of gear teeth has traditionally been a time-consuming heavy stock removal operation in which close tooth size, shape, runout and spacing accuracy are required. This is true whether the teeth are finished by a second forming operation or a shaving operation.

15 Economics of CNC Gear Hobbing (March/April 1987)

NC and CNC metal cutting machines are among the most popular machine tools in the business today, There is also a strong trend toward using flexible machining centers and flexible manufacturing systems. The same trend is apparent in gear cutting. Currently the trend toward CNC tools has increased, and sophisticated controls and peripheral equipment for gear cutting machines are now available; however, the investment in a CNC gear machine has to be justified on the basis of economic facts as well as technical advantages.

16 Hobs & Form Relived Cutters: Common Sharpening Problems (May/June 1998)

Fig. 1 shows the effects of positive and negative rake on finished gear teeth. Incorrect positive rake (A) increase the depth and decreases the pressure angle on the hob tooth. The resulting gear tooth is thick at the top and thin at the bottom. Incorrect negative rake (B) decreases the depth and increases the pressure angle. This results in a cutting drag and makes the gear tooth thin at the top and thick at the bottom.

17 Design and Selection of Hobs (March/April 1986)

The following is a general overview of some of the different factors that lead to the specific design. and the selection of the correct tool for a given hobbing application.

18 Computerized Hob Inspection & Applications of Inspection Results - Part I (May/June 1994)

Can a gear profile generated by the hobbing method be an ideal involute? In strictly theoretical terms - no, but in practicality - yes. A gear profile generated by the hobbing method is an approximation of the involute curve. Let's review a classic example of an approximation.

19 Computerized Hob Inspection & Applications of Inspection Results Part II (July/August 1994)

Flute Index Flute index or spacing is defined as the variation from the desired angle between adjacent or nonadjacent tooth faces measured in a plane of rotation. AGMA defines and provides tolerance for adjacent and nonadjacent flute spacing errors. In addition, DIN and ISO standards provide tolerances for individual flute variation (Fig. 1).

20 Dry Hobbing Process Technology Road Map (March/April 2001)

Recent trends in gear cutting technology have left process engineers searching for direction about which combination of cutting tool material, coating, and process technology will afford the best quality at the lowest total cost. Applying the new technologies can have associated risks that may override the potential cost savings. The many interrelated variables to be considered and evaluated tend to cloud the issue and make hobbing process development more difficult.

21 A Clockwork Gear (January/February 1992)

Question: Could you explain what is meant by "horological gearing"? I never heard of this before, although I understand it has something to do with watches. Could you also explain the meaning of a "going gear train"?

22 Gear Inspection Chart Evaluation; Specifying Unusual Worm Gear Sets (November/December 1991)

Question: When evaluating charts from a gear inspection machine, it is sometimes found that the full length of the profile traces vary, and that sometimes they are less than the length of active profile (above start of active profile-SAP) by up to 20%. This condition could be caused by a concentricity error between tooth grinding and shaping, or by unequal stock removal when grinding. (See Fig. 1.) Is it possible that some of the variation is coming from the inspection machine? How can variation from the inspection machine be reduced?

23 Single Flank Measuring; Estimating Horsepower Capacity (September/October 1991)

Question: What is functional measurement and what is the best method for getting truthful answers?

24 Viewpoint (November/December 1991)

Dear Editor: In Mr. Yefim Kotlyar's article "Reverse Engineering" in the July/August issue, I found an error in the formula used to calculate the ACL = Actual lead from the ASL = Assumed lead.

25 Optimum Shot Peening Specification - I (November/December 1991)

Shot peening is widely recognized as a prove, cost-effective process to enhance the fatigue characteristics of metal parts and eliminate the problems of stress corrosion cracking. Additional benefits accrue in the areas of forming and texturizing. Though shot peening is widely used today, the means of specifying process parameters and controlling documents for process control are not widely understood. Questions regarding shot size, intensity, and blueprint specification to assure a high quality and repeatable shot peening process are continually asked by many design and materials engineers. This article should answer many of the questions frequently asked by engineering professionals and to further assist companies interested in establishing a general shot peening specification.

26 Recent Developments in Gear Metrology (November/December 1991)

Metrology is a vital component of gear manufacturing. Recent changes in this area, due in large part to the advent of computers, are highlighted in this article by comparison with more traditional methods.

27 Gear Blanking (May/June 1992)

The term "blanking" refers to the initial metal cutting operations in the process planning sequence which produce the contour of a part starting from rough material. The scope of blanking is: To remove the excess material To machine the part to print specifications, except for those surfaces with subsequent finishing operations. To leave adequate machining stock for finishing operations. To prepare good quality surfaces for location and clamping of the part throughout the process.

28 Base Pitch Tables (September/October 1992)

There is one dimension common to both members of a pair of properly mating spur gears - the base pitch (BP). This base pitch is equal to the circular pitch of the gear on the base circle (see Fig. 1). For a helical gear, the base pitch can be described in either the transverse or normal plane, and is called the transverse base pitch (TBP) or normal base pitch (NBP), respectively. For parallel axis helical gears, both the TBP and NBP must be the same on both mating gears. For skew axis helical gears, only the NBP must be common.

29 Classification of Types of Gear Tooth Wear - Part I (November/December 1992)

The phenomena of deterioration of surfaces are generally very complex and depend on numerous conditions which include the operating conditions, the type of load applied, the relative speeds of surfaces in contact, the temperature, lubrication, surfaces hardness and roughness, and the compatibility and nature of materials.

30 Camshaft Gears (November/December 1992)

One of our readers in England has asked for our help in locating published technical data and information on the design, manufacture, and inspection of camshaft gears. Although millions of these gears have been made and are in constant use, we are not aware of any formal material having been published. We would be pleased to hear from anyone who had knowledge of such information.

31 Application Analysis (January/February 1993)

Questions: I have heard the terms "safety factor," "service factor," and "application factor" used in discussing gear design. what are these factors an dhow do they differ from one another? Why are they important?

32 Reader Dialogue: Functional Measurement of Gears; More Good Gear Books (September/October 1992)

From time to time, the editors of "Shop Floor" receive correspondence from readers relating to particular articles they have written for past issues. As one of the purposes of this column is to provide a forum for the exchange of ideas, we reproduce here two of these letters and their replies. The subject of the first is the functional measurement of gears. (See Gear Technology, Sept/Oct, 1991, p. 17) Robert E. Smith writes the reply.

33 Gear Inspection and Measurement (July/August 1992)

The purpose of gear inspection is to: Assure required accuracy and quality, Lower overall cost of manufacture by controlling rejects and scrap, Control machines and machining practices and maintain produced accuracy as machines and tools wear, Determine hear treat distortions to make necessary corrections.

34 Gear Hardness Technology (March/April 1992)

In a very general sense, increasing the hardness of a steel gear increases the strength of the gear. However, for each process there is a limit to its effectiveness. This article contains background information on each of the processes covered. In each section what is desired and what is achievable is discussed. Typical processes are presented along with comments on variables which affect the result. By reviewing the capabilities and processes, it is possible to determine the limits to each process.

35 The Top Ten Books for Gear Engineers (May/June 1992)

When I was new to gear engineering, I found the array of gear literature scare, and the information scattered and conflicting. After investigating the materials available, I set the goal of creating an annotated listing of the references. There are many valuable resources, but for this article I have selected ten of the best. These references, in my opinion, are the most useful, and cover the scope while minimizing redundancy.

36 Grinding of Spur and Helical Gears (July/August 1992)

Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.

37 Optimum Shot Peening Specification - II (January/February 1992)

Following is the second part of an article begun in our last issue. The first part covered basic shot peening theory, shot peening controls, and considerations that should go into developing a shot peening specification. Part II covers optional peening methods and the relationship of shot peening specifications to the drawings.

38 Gear Fundamentals Reverse Engineering (July/August 1991)

Whether gear engineers have to replace an old gear which is worn out, find out what a gear's geometry is after heat treatment distortion, or just find out parameters of gears made by a competitor, sometimes they are challenged with a need to determine the geometry of unknown gears. Depending on the degree of accuracy required, a variety of techniques are available for determining the accuracy of an unknown gear. If a high degree of precision is important, a gear inspection device has to be used to verify the results. Frequently, several trial-and-error attempts are made before the results reach the degree of precision required.

39 Helical Gear Mathematics, Formulas and Examples Part II (July/August 1988)

The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.

40 Helical Gear Mathematics Formulas and Examples (May/June 1988)

The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.

41 Involutometry (September/October 1988)

Involute Curve Fundamentals. Over the years many different curves have been considered for the profile of a gear tooth. Today nearly every gear tooth uses as involute profile. The involute curve may be described as the curve generated by the end of a string that is unwrapped from a cylinder. (See Fig. 1) The circumference of the cylinder is called the base circle.

42 Basic Spur Gear Design (November/December 1988)

Primitive gears were known and used well over 2,000 years ago, and gears have taken their place as one of the basic machine mechanisms; yet, our knowledge and understanding of gearing principles is by no means complete. We see the development of faster and more reliable gear quality assessment and new, more productive manufacture of gears in higher materials hardness states. We have also seen improvement in gear applications and design, lubricants, coolants, finishes and noise and vibration control. All these advances push development in the direction of smaller, more compact applications, better material utilization and improved quietness, smoothness of operation and gear life. At the same time, we try to improve manufacturing cost-effectiveness, making use of highly repetitive and efficient gear manufacturing methods.

43 Spur Gear Fundamentals (January/February 1989)

Gears are toothed wheels used primarily to transmit motion and power between rotating shafts. Gearing is an assembly of two or more gears. The most durable of all mechanical drives, gearing can transmit high power at efficiencies approaching 0.99 and with long service life. As precision machine elements gears must be designed.

44 Involutometry Illustrations (November/December 1988)

In our last issue, the labels on the drawings illustrating "Involutometry" by Harlan Van Gerpan and C. Kent Reece were inadvertently omitted. For your convenience we have reproduced the corrected illustrations here. We regret any inconvenience this may have caused our readers.

45 Hard Gear Finishing (March/April 1988)

Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.

46 Selection of a Proper Ball Size to Check an Involute Spur or Helical Cear Tooth (September/October 1987)

A much-used method for checking the tooth thickness of an involute gear tooth is to measure the dimension over two balls placed in most nearly opposite spaces in the case of external gears, and the dimension between the balls in the case of internal gears. This measurement is then checked against a pre-calculated dimension to denote an acceptable part.

47 Gear Roll-Finishing (May/June 1987)

In this discussion of gear roll-finishing particular attention is called to the special tooth nomenclature resulting from the interaction between the rolling die teeth and the gear teeth. To eliminate confusion the side of a gear tooth that is in contact with the "approach" side of a rolling die tooth is also considered to be the approach side. The same holds true for the "trail" side. Thus, the side of the gear tooth that is in contact with the trail side of a rolling die is also considered to be the trail side.

48 Rotary Gear Honing (May/June 1987)

Rotary gear honing is a hard gear finishing process that was developed to improve the sound characteristics of hardened gears by: Removing nicks and burrs; improving surface finish; and making minor corrections in tooth irregularities caused by heat-treat distortion.

49 Engineering Constants (May/June 1987)

Rules and Formula for worm gears, bevel gears and strength of gear teeth.

50 Gear Design Options (May/June 1987)

When specifying a complete gear design, the novice designer is confronted with an overwhelming and frequently confusing group of options which must be specified. This array of specifications range from the rather vague to the very specific.

51 The Interrelationship of Tooth Thickness Measurements as Evaluated by Various Measuring Techniques (September/October 1987)

The first commandment for gears reads "Gears must have backlash!" When gear teeth are operated without adequate backlash, any of several problems may occur, some of which may lead to disaster. As the teeth try to force their way through mesh, excessive separating forces are created which may cause bearing failures. These same forces also produce a wedging action between the teeth with resulting high loads on the teeth. Such loads often lead to pitting and to other failures related to surface fatigue, and in some cases, bending failures.

52 Cutting Fluid Selection and Process Controls for the Gear Manufacturing Industry (July/August 1987)

The last decade has been a period of far-reaching change for the metal working industry. The effect of higher lubricant costs, technical advances in machine design and increasing competition are making it essential that manufacturers of gears pay more attention to testing, selecting and controlling cutting fluid systems. Lubricant costs are not a large percentage of the process cost relative to items such as raw materials, equipment and labor, and this small relative cost has tended to reduce the economic incentive to evaluate and to change cutting fluids.

53 Hard Finishing and Fine Finishing Part 1 (September/October 1989)

Profitable hard machining of tooth flanks in mass production has now become possible thanks to a number of newly developed production methods. As used so far, the advantages of hard machining over green shaving or rolling are the elaborately modified tooth flanks are produced with a scatter of close manufacturing tolerances. Apart from an increase of load capacity, the chief aim is to solve the complex problem of reducing the noise generation by load-conditioned kinematic modifications of the tooth mesh. In Part II, we shall deal with operating sequences and machining results and with gear noise problems.

54 Gear Grinding Fundeamentals (September/October 1989)

This article deals with certain item to be taken into consideration for gear grinding, common problems that arise in gear grinding and their solutions. The discussion will be limited to jobbing or low-batch production environments, where experimental setup and testing is not possible for economic and other reasons.

55 Synthesis of Spiral Bevel Gears (March/April 1991)

There are different types of spiral bevel gears, based on the methods of generation of gear-tooth surfaces. A few notable ones are the Gleason's gearing, the Klingelnberg's Palloid System, and the Klingelnberg's and Oerlikon's Cyclo Palliod System. The design of each type of spiral bevel gear depends on the method of generation used. It is based on specified and detailed directions which have been worked out by the mentioned companies. However, there are some general aspects, such as the concepts of pitch cones, generating gear, and conditions of force transmissions that are common for all types of spiral bevel gears.

56 The Lubrication of Gears - Part 1 (March/April 1991)

This is a three-part article explaining the principles of gear lubrication. It reviews current knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Part 1 classifies gear tooth failures into five modes and explains the factors that a gear designer and operator must consider to avoid gear failures. It defines the nomenclature and gives a list of references for those interested in further research. It also contains an in-depth discussion of the gear tooth failure modes that are influenced by lubrication and gives methods for preventing gear tooth failures.

57 Hard Finishing By Conventional Generating and Form Grinding (March/April 1991)

The quality of a gear and its performance is determined by the following five parameters, which should be specified for each gear: Pitch diameter, involute form, lead accuracy, spacing accuracy, and true axis of rotation. The first four parameters can be measured or charted and have to be within tolerance with respect to the fifth. Pitch diameter, involute, lead, and spacing of a gear can have master gear quality when measured or charted on a testing machine, but the gear might perform badly if the true axis of rotation after installation is no longer the same one used when testing the gear.

58 Bevel Gear Manufacturing Troubleshooting (March/April 1991)

The quality of gearing is a function of many factors ranging from design, manufacturing processes, machine capability, gear steel material, the machine operator, and the quality control methods employed. This article discusses many of the bevel gear manufacturing problems encountered by gear manufacturers and some of the troubleshooting techniques used.

59 The Lubrication of Gears - Part III (July/August 1991)

This is the final part of a three-part series on the basics of gear lubrication. It covers selection of lubricant types and viscosities, the application of lubricants, and a case history

60 The Lubrication of Gears - Part II (May/June 1991)

What follows is Part 2 of a three-part article covering the principles of gear lubrication. Part 2 gives an equation for calculating the lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication regime. An equation for Blok's flash temperature, which is used for predicting the risk of scuffing, is also given.

61 What Is Runout, And Why Should I Worry About It (January/February 1991)

Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout. Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.

62 The Effects of Surface Hardening on the Total Gear Manufacturing System (January/February 1991)

Carburized and hardened gears have optimum load-carrying capability. There are many alternative ways to produce a hard case on the gear surface. Also, selective direct hardening has some advantages in its ability to be used in the production line, and it is claimed that performance results equivalent to a carburized gear can be obtained. This article examines the alternative ways of carburizing, nitriding, and selective direct hardening, considering equipment, comparative costs, and other factors. The objective must be to obtain the desired quality at the lowest cost.

63 Achievable Carburizing Specifications (January/February 1990)

A widespread weakness of gear drawings is the requirements called out for carburize heat treating operations. The use of heat treating specifications is a recommended solution to this problem. First of all, these specifications guide the designer to a proper callout. Secondly, they insure that certain metallurgical characteristics, and even to some extent processing, will be obtained to provide the required qualities in the hardened gear. A suggested structure of carburizing specifications is give.

64 Hard Finishing and Fine Finishing Part 2 (November/December 1989)

After shaping or hobbing, the tooth flanks must be either chamfered or duburred. Here it is paramount that the secondary burr produced will not be formed into the flank, but to the face of the gear, because during hardening, the secondary burr will straighten up and, due to its extreme hardness, will lead to excessive tool wear.

65 Involute Splines (September/October 1990)

Engineering design requires many different types of gears and splines. Although these components are rather expensive, subject to direct wear, and difficult to replace, transmissions with gears and splines are required for two very simple reasons: 1) Motors have an unfavorable (disadvantageous) relation of torque to number of revolutions. 2)Power is usually required to be transmitted along a shaft.

66 Accurate and Fast Gear Trigonometry (September/October 1990)

An accurate and fast calculation method is developed to determine the value of a trigonometric function if the value of another trigonometric function is given. Some examples of conversion procedures for well-known functions in gear geometry are presented, with data for accuracy and computing time. For the development of such procedures the complete text of a computer program is included.

67 Fundamentals of Bevel Gear Hard Cutting (November/December 1990)

Some years back, most spiral bevel gear sets were produced as cut, case hardened, and lapped. The case hardening process most frequently used was and is case carburizing. Many large gears were flame hardened, nitrided, or through hardened (hardness around 300 BHN) using medium carbon alloy steels, such as 4140, to avoid higher distortions related to the carburizing and hardening process.

68 Basic Gear Generation Designing the Teeth (September/October 1991)

The finished gear engineer, the man who is prepared for all emergencies, must first of all know the basic design principles. Next he must be well versed in all sorts of calculations which come under the heading of "involute trigonometry."

69 The Fundamentals of Gear Press Quenching (March/April 1994)

Most steel gear applications require appreciable loads to be applied that will result in high bending and compressive stresses. For the material (steel) to meet these performance criteria, the gear must be heat treated. Associated with this thermal processing is distortion. To control the distortion and achieve repeatable dimensional tolerances, the gear will be constrained during the quenching cycle of the heat treatment process. This type of fixture quenching is the function of gear quench pressing equipment.

70 What "Ease-Off" shows about Bevel and Hypoid Gears (September/October 2001)

The configuration of flank corrections on bevel gears is subject to relatively narrow restrictions. As far as the gear set is concerned, the requirement is for the greatest possible contact zone to minimize flank compression. However, sufficient reserves in tooth depth and longitudinal direction for tooth contact displacement should be present. From the machine - and particularly from the tool - point of view, there are restrictions as to the type and magnitude of crowning that can be realized. Crowning is a circular correction. Different kinds of crowning are distinguished by their direction. Length crowning, for example, is a circular (or 2nd order) material removal, starting at a reference point and extending in tooth length or face width.

71 Measuring Base Helix Error on a Sine Bar (July/August 2001)

Base helix error - the resultant of lead and profile errors is the measured deviation from the theoretical line of contact (Fig. 1). It can be measured in the same way that lead error on a spur gear is measured, namely, by setting a height gage to height H based on the radial distance r to a specified line of contact (Fig. 2), rotating the gear so as to bring a tooth into contact with the indicator on the height gage, and then moving the height gage along two or more normals to the plane of action. The theoretical line of contact on helical gear must be parallel to the surface plate, which is attained by mounting the gear on a sine bar (Fig. 3).

72 Optimizing Plastic Gear Geometry: An Inroduction to Gear Optimization (May/June 2002)

There are numerous engineering evaluations required to design gear sets for optimum performance with regard to torque capacity, noise, size and cost. How much cost savings and added gear performance is available through optimization? Cost savings of 10% to 30% and 100% added capacity are not unusual. The contrast is more pronounced if the original design was prone to failure and not fit for function.

73 Measuring Profile and Base Pitch Error with a Micrometer (September/October 2002)

In this article, equations for finding profile and base pitch errors with a micrometer are derived. Limitations of micrometers with disc anvils are described. The design of a micrometer with suitable anvils is outlined.

74 Heat Treat Process and Material Selection for High Performance Gears (March/April 2003)

The selection of the heat treat process and the congruent material required for high performance gears can become very involved.

75 Design Formulas for Evaluating Contact Stress in Generalized Gear Pairs (May/June 2001)

A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).

76 The Basics of Spiral Bevel Gears (January/February 2001)

This article also appears as Chapter 1 in the Gleason Corporation publication "Advanced Bevel Gear Technology." Gearing Principles in Cylindrical and Straight Bevel Gears The purpose of gears is to transmit motion and torque from one shaft to another. That transmission normally has to occur with a constant ratio, the lowest possible disturbances and the highest possible efficiency. Tooth profile, length and shape are derived from those requirements.

77 The Basics of Gear Metrology and Terminology Part II (November/December 1998)

In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.

78 Metallurgical Aspects to be Considered in Gear and Shaft Design (March/April 1999)

In his Handbook of Gear Design (Ref.1), Dudley states (or understates): "The best gear people around the world are now coming to realize that metallurgical quality is just as important as geometric quality." Geometric accuracy without metallurgical integrity in any highly stressed gear or shaft would only result in wasted effort for all concerned - the gear designer, the manufacturer, and the customer - as the component's life cycle would be prematurely cut short. A carburized automotive gear or shaft with the wrong surface hardness, case depth or core hardness may not even complete its basic warranty period before failing totally at considerable expense and loss of prestige for the producer and the customer. The unexpected early failure of a large industrial gear or shaft in a coal mine or mill could result in lost production and income while the machine is down since replacement components may not be readily available. Fortunately, this scenario is not common. Most reputable gear and shaft manufacturers around the world would never neglect the metallurgical quality of their products.

79 Development of Gear Technology and Theory of Gearing (July/August 1999)

I must admit that after thumbing through the pages of this relatively compact volume (113 pages, 8.5 x 11 format), I read its three chapters(theory of gearing, geometry and technology, and biographical history) from rear to front. It will become obvious later in this discussion why I encourage most gear engineers to adopt this same reading sequence!

80 Definition and Inspection of Profile and Lead of a Worm Wheel (November/December 1999)

Traditionally, profile and lead inspections have been indispensable portions of a standard inspection of an involute gear. This also holds true for the worm of a worm gear drive (Ref. 1). But the inspection of the profile and the lead is rarely performed on a worm wheel. One of the main reasons is our inability to make good definitions of these two elements (profile and lead) for the worm wheel. Several researchers have proposed methods for profile and lead inspections of a worm wheel using CNC machines or regular involute and lead inspections of a worm wheel using CNC machines or regular involute measuring machines. Hu and Pennell measured a worm wheel's profile in an "involute" section and the lead on the "pitch" cylinder (Ref. 2). This method is applicable to a convolute helicoid worm drive with a crossing angle of 90 degrees because the wheel profile in one of the offset axial planes is rectilinear. This straight profile generates an involute on the generated worm wheel. Unfortunately, because of the hob oversize, the crossing angle between the hob and the worm wheel always deviates from 90 degrees by the swivel angle. Thus, this method can be implemented only approximately by ignoring the swivel angle. Another shortcoming of this method is that there is only one profile and one lead on each flank. If the scanned points deviated from this curve, it produced unreal profile deviation. Octrue discussed profile inspection using a profile checking machine (Ref. 3).

81 Gear Shaving Basics - Part I (November/December 1997)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.

82 The Involute Curve (January/February 2013)

Although gears can be manufactured using a wide variety of profiles, the involute curve is the most commonly used. Here are some of the basics.

83 The Pros and Cons of Fully Ground Root Fillets (August 2014)

For maximum life in carburized and ground gearing, I have been advised that fully grinding a radius into the root gives maximum resistance against fatigue failures. Others have advised that a hobbed and unground radius root form is best. Which is best, and why?

84 Additives: Anti-Wear vs Anti-Scuff (August 2014)

A reader asks: While I have read a reasonable amount of the literature on the pros and cons of anti-wear and anti-scuff additives, I find that the more I read, the more confused I become. I could use some clarity in my life.

85 The Basics of Gear Theory (June 2015)

Beginning with our June Issue, Gear Technology is pleased to present a series of full-length chapters excerpted from Dr. Hermann J. Stadtfeld’s latest scholarly — yet practical — contribution to the gear industry — Gleason Bevel Gear Technology. Released in March, 2014 the book boasts 365 figures intended to add graphic support of a better understanding and easier recollection of the covered material.

86 The Basics of Gear Theory, Part 2 (July 2015)

The first part of this publication series covered the general basics of involute gearing and applied the generating principle of cylindrical gears analogous to angular gear axis arrangements the kinematic coupling conditions between the two mating members have been postulated in three rules. Entering the world of bevel gears also required to dwell somewhat on the definition of conjugacy. The second part is devoted to the different generating gears and the chain of kinematic relationships between the gear - gear generator - pinion generator and pinion.

87 Idler Gears (May 2016)

What is the point of using two idler gears in a geartrain?

88 Importance of Contact Pattern in Assembly of Bevel vs Cylindrical Gears (August 2014)

Why is there so much emphasis on the tooth contact pattern for bevel gears in the assembled condition and not so for cylindrical gears, etc?

89 Worm Gears - Ask the Expert (October 2013)

How does one determine the center of a worm and a worm wheel? Also, what are the differences between the common worm tooth forms?

90 Operating Pressure Angle (May 2013)

What is the difference between pressure angle and operating pressure angle?

91 Hardness Testing (May 2013)

This back-to-basics article describes the main methods used for hardness testing of gears: Rockwell, Brinell, Vickers and Knoop.

92 GT Extras (June/July 2013)

Video from Hexagon Metrology, Back-to-Basics archive, e-mail newsletter updates and what's happening on LinkedIn

93 How to Design and Install Bevel Gears for Optimum Performance - Lessons Learned (June/July 2013)

Bevel gears must be assembled in a specific way to ensure smooth running and optimum load distribution between gears. While it is certainly true that the "setting" or "laying out" of a pair of bevel gears is more complicated than laying out a pair of spur gears, it is also true that following the correct procedure can make the task much easier. You cannot install bevel gears in the same manner as spur and helical gears and expect them to behave and perform as well; to optimize the performance of any two bevel gears, the gears must be positioned together so that they run smoothly without binding and/or excessive backlash.

94 The Basics of Gear Metrology and Terminology Part I (September/October 1998)

It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.

95 Dry Cutting of Bevel and Hypoid Gears (May/June 1998)

High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.

96 Quality Gear Inspection - Part I (September/October 1994)

Quality gear inspection means doing the "right" inspections "right." A lot of time and money can be spent doing the wrong types of inspections related to function and doing them incorrectly. As we will discover later, such things as runout can creep into the manufacturing and inspection process and completely ruin any piece of data that is taken. this is one of the most important problems to control for quality inspection.

97 Curvic Coupling Design (November/December 1986)

Curvic Couplings were first introduced in 1942 to meet the need for permanent couplings and releasing couplings (clutches), requiring extreme accuracy and maximum load carrying capacity, together with a fast rate of production. The development of the Curvic Coupling stems directly from the manufacture of Zerol and spiral bevel gears since it is made on basically similar machines and also uses similar production methods. The Curvic Coupling can therefore lay claim to the same production advantages and high precision associated with bevel gears.

98 Quality Gear Inspection - Part II (November/December 1994)

This section will deal with the use of gear inspection for diagnostic purposes rather than quality determination. The proper evaluation of various characteristics in the data can be useful for the solution of quality problems. It is important to sort out whether the problem is coming from the machine, tooling and/or cutters, blanks, etc. An article by Robert Moderow in the May/June 1985 issue of Gear Technology is very useful for this purpose.

99 CNC Basics (January/February 1995)

NC and CNC machines are at the heart of manufacturing today. They are the state-of-the-art equipment everybody has (or is soon going to get) that promise to lower costs, increase production and turn manufacturers into competitive powerhouses. Like many other high tech devices (such as microwaves and VCRs), lots of people have and use them - even successfully - without really knowing much about how they operate. But upgrading to CNC costs a lot of money, so it's crucial to separate the hype from the reality.

100 Gear Oil Classification and Selection (May/June 1995)

Today gear drive operations have several options when selecting the proper lubricant for their gearboxes. As in the past, the primary lubricant used for gearbox lubrication is mineral oil. But with the advances in technology, synthetic hydrocarbons (PAOs) and polyglycols show very specific advantages in certain applications. With gear drives becoming more and more precise, it is now also to the benefit of the gear operator to verify that he or she has the proper additive package and viscosity in the lubricant selected. Fig. 1 shoes that a gear oil is a combination of a base oil and specific additives. The base oils can be either mineral oil, a synthetic or even in some cases a combination of the two.

101 Lubricants and Lubrication of Plastic Gears (September/October 1993)

Surface measurement of any metal gear tooth contact surface will indicate some degree of peaks and valleys. When gears are placed in mesh, irregular contact surfaces are brought together in the typical combination of rolling and sliding motion. The surface peaks, or asperities, of one tooth randomly contact the asperities of the mating tooth. Under the right conditions, the asperities form momentary welds that are broken off as the gear tooth action continues. Increased friction and higher temperatures, plus wear debris introduced into the system are the result of this action.

102 The European Rack Shift Coefficient 'X' for Americans (July/August 1993)

The use of dimensionless factors to describe gear tooth geometry seems to have a strong appeal to gear engineers. The stress factors I and J, for instance, are well established in AGMA literature. The use of the rack shift coefficient "x" to describe nonstandard gear proportions is common in Europe, but is not as commonly used in the United States. When it is encountered in the European literature or in the operating manuals for imported machine tools, it can be a source of confusion to the American engineer.

103 Gear Material Quality: How To Judge It...Pitting: How To Prevent It (March/April 1993)

How do we know when the gear material we buy is metallurgically correct? How can we judge material quality when all gear material looks alike?

104 Introduction to Worm Gearing (March/April 1993)

Worm gears are among the oldest types of gearing, but that does not mean they are obsolete, antiquated technology. The main reasons for the bad experiences some engineers have with worm gearing are misapplication and misuse. No form of gearing works for every application. Strengths and weaknesses versus the application must be weighed to decide which form of gearing to use. For proper application and operation of worm gears, certain areas that may differ from other types of gearing need to be addressed.

105 Coarse Pitch Gears (May/June 1993)

This article discusses briefly some common manufacturing problems relating to coarse pitch gears and their suggested solutions. Most of the discussion will be limited to a low-quality production environment using universal machine tools.

106 Gear Tip Chamfer and Gear Noise; Surface Measurement of Spiral Bevel Gear Teeth (July/August 1993)

Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?

107 Gear Grinding Comes of Age (July/August 1995)

In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.

108 A Basic Guide to Deburring and Chamfering Gears (July/August 1995)

In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.

109 Basic Honing & Advanced Free-Form Honing (July/August 1997)

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

110 Involute Inspection Methods and Interpretation of Inspection Results (July/August 1997)

What is so unique about gear manufacturing and inspection? Machining is mostly associated with making either flat or cylindrical shapes. These shapes can be created by a machine's simple linear or circular movements, but an involute curve is neither a straight line nor a circle. In fact, each point of the involute curve has a different radius and center of curvature. Is it necessary to go beyond simple circular and linear machine movements in order to create an involute curve? One of the unique features of the involute is the fact that it can be generated by linking circular and linear movements. This uniqueness has become fertile soil for many inventions that have simplified gear manufacturing and inspection. As is the case with gear generating machines, the traditional involute inspection machines take advantage of some of the involute properties. Even today, when computers can synchronize axes for creating any curve, taking advantage of involute properties can be very helpful. I t can simplify synchronization of machine movements and reduce the number of variables to monitor.

111 The Geometry of Helical Mesh (September/October 1997)

In 1961 I presented a paper, "Calculating Conjugate Helical Forms," at the semi-annual meeting of the American Gear Manufacturers Association (AGMA). Since that time, thousands of hobs, shaper cutters and other meshing parts have been designed on the basis of the equations presented in that paper. This article presents the math of that paper without the formality of its development and goes on to discuss its practical application.

112 Beginning Gear Training (January/February 1998)

Gearing is a self-training course for teaching the basic fundamentals of gears and gearing to those totally unfamiliar with the subject.

113 Hard Gear Finishing With CBN-Basic Considerations (May/June 1998)

For over 50 years, grinding has been an accepted method of choice for improving the quality of gears and other parts by correcting heat treat distortions. Gears with quality levels better than AGMA 10-11 or DIN 6-7 are hard finished, usually by grinding. Other applications for grinding include, but are not limited to, internal/external and spur/helical gear and spline forms, radius forms, threads and serrations, compressor rotors, gerotors, ball screw tracks, worms, linear ball tracks, rotary pistons, vane pump rotators, vane slots, and pump spindles.

114 CNC Gear Grinding Methods (May/June 1997)

Grinding in one form or another has been used for more than 50 years to correct distortions in gears caused by the high temperatures and quenching techniques associated with hardening. Grinding improves the lead, involute and spacing characteristics. This makes the gear capable of carrying the high loads and running at the high pitch line velocities required by today's most demanding applications. Gears that must meet or exceed the accuracy requirements specified by AGMA Quality 10-11 or DIN Class 6-7 must be ground or hard finished after hear treatment.

115 The Broaching of Gears (March/April 1997)

Broaching is a process in which a cutting tool passes over or through a part piece to produce a desired form. A broach removes part material with a series of teeth, each one removing a specified amount of stock.

116 The Beginner's Guide to Powder Metal Gears (September/October 1995)

Increasingly gear designers and product engineers are capitalizing on the economic advantages of powder metallurgy (P/M) for new and existing gear applications. Powder metal gears are found in automobiles, outdoor power equipment transmissions and office machinery applications as well as power hand tools, appliances and medial components.

117 Determining Spline Misalignment Capabilities (November/December 1995)

Introducing backlash into spline couplings has been common practice in order to provide for component eccentric and angular misalignment. The method presented here is believed to be exact for splines with even numbers of teeth and approximate for those with odd numbers of teeth. This method is based on the reduction of the maximum effective tooth thickness to achieve the necessary clearance. Other methods, such as tooth crowning, are also effective.

118 Measurement Error Induced by Measuring over Pins Instead of Balls (January/February 1996)

The purpose of this article is to clarify some terms and methods used in measuring the size of gears. There is also an explanation given of the error induced and how to correct for it in certain cases when the measurement is made using pins instead of balls.

119 AGMA & MPIF Develop Standards, Information Sheet for Powder Metal Gears (September/October 1996)

AGMA and members of the Metal Powder Industries Federation (MPIF) are three years into a joint project to develop specifications and an information sheet on rating powder metal gears. According to committee vice chairman Glen A. Moore of Burgess-Norton Mfg. Co., the first phase of the project, the publication of AGMA Standard "6009-AXX, Specifications for Powder Metallurgy Gears," should be completed in late 1996 or early 1997.

120 Classification of Types of Gear Tooth Wear - Part II (January/February 1993)

The first part of this article included abrasive wear with two bodies, streaks and scoring, polishing, and hot and cold scuffing. This part will deal with three-body wear, scratches or grooves, and interference wear. Normal, moderate, and excessive wear will be defined, and a descriptive chart will be presented.

121 Gear Shaving Basics, Part I (November/December 1997)

Gear shaving is a free cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity.

122 Selection of Hobbing Data (November/December 1987)

The art of gear hobbing has advanced dramatically since the development and introduction of unique machine and tool features such as no backlash, super rigidity, automatic loading of cutting tools, CNC controls, additional machine power and improved cutter materials and coatings. It is essential to utilize all these features to run the machine economically.

123 The Effect of Reverse Hobbing at a High Speed (March/April 1987)

Today it is common practice when climb hobbing to keep the direction of the hob thread the same as that of the helical gear. The same generalization holds true for the mass production of gears for automobiles. It is the authors' opinion, however, that conventional hobbing with a reverse-handed hob is more effective for the high-speed manufacture of comparatively small module gears for automobiles. The authors have proven both experimentally and theoretically that reverse-handed conventional hobbing, using a multi-thread hob with a smaller diameter is very effective for lengthening the life of the hob and for increasing cutting efficiency at high speeds.

124 Good Gears Start With Good Blanks (November/December 1987)

The quality of the finished gear is influenced by the very first machining operations of the blank. Since the gear tooth geometry is generated on a continuously rotating blank in hobbing or shaping, it is important that the timed relationship between the cutter and workpiece is correct. If this relationship is disturbed by eccentricities of the blank to its operating centerline, the generated gear teeth will not be of the correct geometry. During the blanking operations, the gear's centerline and locating surfaces are established and must be maintained as the same through the following operations that generate the gear teeth.

125 Contact Surface Topology of Worm Gear Teeth (March/April 1988)

Among the various types of gearing systems available to the gear application engineer is the versatile and unique worm and worm gear set. In the simpler form of a cylindrical worm meshing at 90 degree axis angle with an enveloping worm gear, it is widely used and has become a traditional form of gearing. (See Fig. 1) This is evidenced by the large number of gear shops specializing in or supplying such gear sets in unassembled form or as complete gear boxes. Special designs as well as standardized ratio sets covering wide ratio ranges and center distanced are available with many as stock catalog products.

126 High Speed Hobbing of Gears With Shifted Profiles (July/August 1988)

The newer profile-shifted (long and short addendum) gears are often used as small size reduction gears for automobiles or motorcycles. The authors have investigated the damage to each cutting edge when small size mass-produced gears with shifted profiles are used at high speeds.

127 Viewpoint (July/August 1986)

Since we are a high volume shop, we were particularly interested in Mr. Kotlyar's article describing the effects of hob length on production efficiency which appeared in the Sept/Oct issue of Gear Technology. Unfortunately, some readers many be unnecessarily deterred from applying the analysis to their own situations by the formidabilty of the mathematical calculations. I am making the following small suggestion concerning the evaluation of the constant terms.

128 Controlling Tooth Loads In Helical Gears (March/April 1986)

Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel shafts.

129 Gear Hobbing Technology Update (June/July 2011)

Q&A with Liebherr's Dr. Alois Mundt.

130 LMT Fette Introduces SpeedCore (October 2011)

New material technology allows for more efficient and flexible hobbing.

131 Liebherr's LDF350 Offers Complete Machining in New Dimension (November/December 2011)

The objective, according to Dr.- Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.

132 Economics of CNC Gear Gashing vs. Large D.P. Hobbing (August/September 1984)

Gear gashing is a gear machining process, very much like gear milling, utilizing the principle of cutting one or more tooth (or tooth space) at a time. The term "GASHING" today applies to the roughing, or roughing and finishing, of coarse diametral pitch gears and sprockets. Manufacturing these large coarse gears by conventional methods of rough and finish hobbing can lead to very long machining cycles and uneconomical machine utilization.

133 Gear Tooth Profile Determination From Arbitrary Rack Geometry (November/December 1988)

This article describes a method of obtaining gear tooth profiles from the geometry of the rack (or hob) that is used to generate the gear. This method works for arbitrary rack geometries, including the case when only a numerical description of the rack is available. Examples of a simple rack, rack with protuberances and a hob with root chamfer are described. The application of this technique to the generation of boundary element meshes for gear tooth strength calculation and the generation of finite element models for the frictional contact analysis of gear pairs is also described.

134 Estimating Hobbing Times (July/August 1989)

Hobbing is a continuous gear generation process widely used in the industry for high or low volume production of external cylindrical gears. Depending on the tooth size, gears and splines are hobbed in a single pass or in a two-pass cycle consisting of a roughing cut followed by a finishing cut. State-of-the-art hobbing machines have the capability to vary cutting parameters between first and second cut so that a different formula is used to calculate cycle times for single-cut and double-cut hobbing.

135 New Innovations in Hobbing - Part I (September/October 1994)

Prior to the introduction of titanium nitride to the cutting tool industry in the early 1980s, there was very little progress in the general application of hobbing in the gear cutting industry. The productivity gains realized with this new type of coating initiated a very active time of advancement in the gear manufacturing process.

136 Gear Hobbing Without Coolant (November/December 1994)

For environmental and economic reasons, the use of coolant in machining processes is increasingly being questioned. Rising coolant prices and disposal costs, as well as strains on workers and the environment, have fueled the debate. The use of coolant has given rise to a highly technical system for handling coolant in the machine (cooling, filtering) and protecting the environment (filter, oil-mist collector). In this area the latest cutting materials - used with or without coolant - have great potential for making the metal-removal process more economical. The natural progression to completely dry machining has decisive advantages for hobbing.

137 New Innovations in Hobbing - Part II (November/December 1994)

The first part of this article, which ran in the September/October 1994 issue, explained the fundamentals of gear hobbing and some of the latest techniques, including methods of hob performance analysis and new tool configurations, being used to solve specific application problems. In this issue, the author continues his exploration of hobbing by describing the effects of progress on requirements in accuracy, as well as the latest in materials, coating and dry hobbing.

138 The Second Edition... (March/April 1995)

Gearing for Munchkins Gene Kasten, president of Repair Parts, Inc., of Rockford, IL, is the proud owner of a miniature Barber-Colman hobber, the only one of its kind in the world. The machine, a replica of the old B-C "A" machine, was built between 1933 and 1941 by W. W. Dickover, who devoted 2, 640 hours of his spare time to the project.

139 Carbide Rehobbing A New Technology That Works! (May/June 1994)

Many people in the gear industry have heard of skiving, a process wherein solid carbide or inserted carbide blade hobs with 15 - 60 degrees of negative rake are used to recut gears to 62 Rc. The topic of this article is the use of neutral (zero) rake solid carbide hobs to remove heat treat distortion, achieving accuracies of AGMA 8 to AGMA 14, DIN 10-5 and improving surface finish on gears from 8 DP - 96 DP (.3 module - .26 m.).

140 Using Hobs for Skiving; A Pre-Finish and Finishing Solution (May/June 1993)

Our company manufactures a range of hardened and ground gears. We are looking into using skiving as part of our finishing process on gears in the 4-12 module range made form 17 CrNiMO6 material and hardened to between 58 and 62 Rc. Can you tell us more about this process?

141 Our Experts Discuss... (March/April 1991)

Question: I have just become involved with the inspection of gears in a production operation and wonder why the procedure specifies that four involute checks must be made on each side of the tooth of the gear being produced, where one tooth is checked and charted in each quadrant of the gear. Why is this done? These particular gears are checked in the pre-shaved, finish-shaved, and the after-heat-treat condition, so a lot of profile checking must be done.

142 SPC Acceptance of Hobbing & Shaping Machines (September/October 1991)

Today, as part of filling a typical gear hobbing or shaping machine order, engineers are required to perform an SPC acceptance test. This SPC test, while it is contractually necessary for machine acceptance, is not a machine acceptance test. It is a process capability test. It is an acceptance of the machine, cutting tool, workholding fixture, and workpiece as integrated on the cutting machine, using a gear measuring machine, with its work arbor and evaluation software, to measure the acceptance elements of the workpiece.

143 Line of Action: Concepts & Calculations (January/February 1993)

In the past gear manufacturers have had to rely on hob manufacturers' inspection of individual elements of a hob, such as lead, involute, spacing, and runout. These did not always guarantee correct gears, as contained elements may cause a hob to produce gears beyond tolerance limits.

144 High Technology Hobs (January/February 1993)

Today's high technology hobs are visible different from their predecessors. Gear hobs have taken on a different appearance and function with present day technology and tool and material development. This article shows the newer products being offered today and the reasons for investigating their potential for use in today's modern gear hobbers, where cost reduction and higher productivity are wanted.

145 Optimal Modifications of Gear Tooth Surfaces (March/April 2011)

In this paper a new method for the introduction of optimal modifications into gear tooth surfaces - based on the optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.

146 Zoller and Ingersoll Partner for Measuring Hob Cutters (March/April 2011)

With growing markets in aerospace and energy technologies, measuring hob cutters used in gear cutting is becoming an essential requirement for workpieces and machine tools. Zoller, a provider of solutions for tool pre-setters, measuring and inspection machines and tool management software, has developed a new partnership with Ingersoll/Germany for shop floor checking of hob cutters by a combined hardware and software approach.

147 High Accurate Hobbing with Specially Designed Finishing Hobs (November/December 2003)

Load-carrying capacity of gears, especially the surface durability, is influenced by their tooth surface roughness in addition to their tooth profiles and tooth traces.

148 Full Speed Ahead (May 2012)

Indexable carbide insert (ICI) cutting tools continue to play a pivotal role in gear manufacturing. By offering higher cutting speeds, reduced cycle times, enhanced coatings, custom configurations and a diverse range of sizes and capabilities, ICI tools have proven invaluable for finishing and pre-grind applications. They continue to expand their unique capabilities and worth in the cutting tool market.

149 Hobbing Precise, Uniform End Chamfers (March/April 2004)

The seemingly simple process of placing a uniform chamfer on the face ends of spur and helical gears, at least for the aerospace industry, has never been a satisfactory or cost effective process.

150 Tooth Forms for Hobs (March/April 1985)

The gear hobbing process is a generating type of production operation. For this reason, the form of the hob tooth is always different from the form of the tooth that it produces.

151 Comparison of PM-HSS and Cemented Carbide Tools in High-Speed Gear Hobbing (September/October 2009)

This article examines the dry hobbing capabilities of two cutting tool materials—powder metallurgical high-speed steel (PM-HSS) and cemented carbide. Cutting trials were carried out to analyze applicable cutting parameters and possible tool lives as well as the process reliability. To consider the influences of the machinability of different workpiece materials, a case hardening steel and a tempered steel were examined.

152 An Innovative Way of Designing Gear Hobbing Processes (May 2012)

In today’s manufacturing environment, shorter and more efficient product development has become the norm. It is therefore important to consider every detail of the development process, with a particular emphasis on design. For green machining of gears, the most productive and important process is hobbing. In order to analyze process design for this paper, a manufacturing simulation was developed capable of calculating chip geometries and process forces based on different models. As an important tool for manufacturing technology engineers, an economic feasibility analysis is implemented as well. The aim of this paper is to show how an efficient process design—as well as an efficient process—can be designed.

153 Hob Length Effects (September/October 1985)

Hobbing is probably the most popular gear manufacturing process. Its inherent accuracy and productivity makes it a logical choice for a wide range of sizes.

154 New Potentials in Carbide Hobbing (January/February 2004)

To meet the future goals of higher productivity and lower production costs, the cutting speeds and feeds in modern gear hobbing applications have to increase further. In several cases, coated carbide tools have replaced the commonly used high speed steel (HSS) tools.

155 Product News (May 2009)

The complete Product News section from the May 2009 issue of Gear Technology.

156 Hob Tool Life Technology Update (March/April 2009)

The method of cutting teeth on a cylindrical gear by the hobbing process has been in existence since the late 1800s. Advances have been made over the years in both the machines and the cutting tools used in the process. This paper will examine hob tool life and the many variables that affect it. The paper will cover the state-of-the-art cutting tool materials and coatings, hob tool design characteristics, process speeds and feeds, hob shifting strategies, wear characteristics, etc. The paper will also discuss the use of a common denominator method for evaluating hob tool life in terms of meters (or inches) per hob tooth as an alternative to tool life expressed in parts per sharpening.

157 Remedies for Cutting Edge Failure of Carbide Hob due to Chip Crush (November/December 2004)

Some results of evaluation by this method in the automotive industry.

158 Hard Gear Processing with Skiving Hobs (March/April 1985)

As we approach the problem of hard gear processing, it is well to take a look at the reason for discussing it at this time. In our present economic atmosphere throughout the world, more and more emphasis is being placed upon efficiency which is dictated by higher energy costs.

159 Simulation of Hobbing for Analysis of Cutting Edge Failure due to Chip Crush (September/October 2004)

There are great advantages in dry hobbing, not only for friendliness toward the environment, but also for increasing productivity and for decreasing manufacturing cost. Dry hobbing, however, often causes failures in hob cutting edges or problems with the surface quality of gear tooth flanks. These difficulties are not present when hobbing with cutting oil. Pinching and crushing of generated chips between the hob cutting edge and the work gear tooth flank is considered a major cause of those problems.

160 Software-Based Process Design in Gear Finish Hobbing (May 2010)

In this paper, the potential for geometrical cutting simulations - via penetration calculation to analyze and predict tool wear as well as to prolong tool life - is shown by means of gear finish hobbing. Typical profile angle deviations that occur with increasing tool wear are discussed. Finally, an approach is presented here to attain improved profile accuracy over the whole tool life of the finishing hob.

161 The Effect of Straight-Sided Hob Teeth (November/December 2010)

It is well known that hobs with straight-sided teeth do not cut true involutes. In this paper, the difference between the straight side of a hob tooth and the axial profile of an involute worm is evaluated. It is shown that the difference increases as the diametral pitch increases, to the extent that for fine-pitch gearing, the difference is insignificant.

162 Big Gears Better and Faster (January/February 2011)

Indexable carbide insert cutting tools for gears are nothing new. But big gears have recently become a very big business. The result is that there's been a renewed interest in carbide insert cutting tools.

163 Spiral Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part IV (January/February 2011)

This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

164 New Developments in Gear Hobbing (March/April 2010)

Several innovations have been introduced to the gear manufacturing industry in recent years. In the case of gear hobbing—the dry cutting technology and the ability to do it with powder-metallurgical HSS—might be two of the most impressive ones. And the technology is still moving forward. The aim of this article is to present recent developments in the field of gear hobbing in conjunction with the latest improvements regarding tool materials, process technology and process integration.

165 Crowning: A Cheap Fix for Noise and Misalignment Problems (March/April 2010)

Fred Young, CEO of Forest City Gear, talks about sophisticated gear manufacturing methods and how they can help solve common gear-related problems.

166 Optimal Choice of the Shaft Angle for Involute Hobbing (November/December 2007)

With reference to the machining of an involute spur or helical gear by the hobbing process, this paper suggests a new criterion for selecting the position of the hob axis relative to the gear axis.

167 Finish Hobbing Crowned Helical Gears without Twist (January/February 2006)

New tool from LMT-Fette provides combination of operations.

168 Kinematical Simulation of Face Hobbing Indexing and Tooth Surface Generation of Spiral Bevel and Hypoid Gears (January/February 2006)

In addition to the face milling system, the face hobbing process has been developed and widely employed by the gear industry. However, the mechanism of the face hobbing process is not well known.

169 A Split Happened on the Way to Reliable, Higher-Volume Gear Grinding (September/October 2005)

Bevel gear manufacturers live in one of two camps: the face hobbing/lapping camp, and the face milling/grinding camp.

170 What to Look For Before You Leap (March/April 1995)

Question: We are interested in purchasing our first gear hobbing machine. What questions should we ask the manufacturer, and what do we need to know in order to correctly specify the CNC hardware and software system requirements?

171 CNC Software Savvy (May/June 1995)

Question: When we purchase our first CNC gear hobbing machine, what questions should we ask about the software? What do we need to know to correctly specify the system requirements?

172 Gear Inspection and Chart Interpretation (May/June 1985)

Much information has been written on gear inspection, analytical. functional. semiautomatic and automatic. In most cases, the charts, (if you are lucky enough to have recording equipment) have been explained.

173 Material Selection and Heat Treatment (July/August 1985)

Before the optimum mechanical properties can be selected, the working stress must be determined, based on recommended allowable stresses.

174 Characteristics of Master Gears (November/December 2006)

The two-flank roll test measures kickout (tooth-to-tooth composite error) and tooth thickness. In this article, it will be shown that measured values vary with the number of teeth on the master gear.

175 Measuring Pitch Diameter (September/October 2005)

Wait a minute, we don't measure pitch diameter. We're sometimes asked to measure it by customers, though, especially ones with older drawings.

176 All-in-One Broaching Capability (January/February 2010)

Faster, more efficient manufacturing offered with table-top design from American Broach & Machine.

177 Single Flank Data Analysis and Interpretation (September/October 1985)

Much of the information in this article has been extracted from an AGMA Technical Paper, "What Single Flank Testing Can Do For You", presented in 1984 by the author

178 General Equations for Gear Cutting Tool Calculations (November/December 1985)

The proper design or selection of gear cutting tools requires thorough and detailed attention from the tool designer. In addition to experience, intuition and practical knowledge, a good understanding of profile calculations is very important.

179 Updating Modern Production Processes (August 2016)

Gear Technology interviews Scott Yoders of Liebherr about the latest gear machining technologies of relevance to automotive manufacturers.

180 Same Hob for Two Gears (September/October 2016)

I make all the double helical gears that go into a gearbox — four different gears in this unit. If the gear module for the bull gear and the intermediate gear are the same (these are the two individual gears that mate), and the gear module for the high-speed pinion and high-speed gears are the same (these are the other two individual gears that mate in the gear box as well), is it then possible to just use two hobs in this setup to make all four gears, since they mate together with each other? We are currently using a different gear hob for each gear.

181 Locating Multiple Bore Diameters Via Hobbing (November/December 2016)

Attached photos (Figs. 1–2) show a bushing to locate one single bore. This will be used to locate one single bore diameter of a gear wheel. What is (the latest) technology for common clamping a bushing to locate multiple bore diameters in hobbing?

182 Technological Fundamentals of CBN Bevel Gear Finish Grinding (November/December 1985)

The bevel gear grinding process, with conventional wheels, has been limited to applications where the highest level of quality is required.

183 Gear Finishing by Shaving, Rolling and Honing, Part I (March/April 1992)

There are several methods available for improving the quality of spur and helical gears following the standard roughing operations of hobbing or shaping. Rotary gear shaving and roll-finishing are done in the green or soft state prior to heat treating.

184 Gear Finishing by Shaving, Rolling and Honing, Part II (May/June 1992)

Part I of this series focused on gear shaving, while Part II focuses on gear finishing by rolling and honing.

185 The Process of Gear Shaving (May/June 1984)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity.

186 Generating and Checking Involute Gear Teeth (May/June 1986)

It has previously been demonstrated that one gear of an interchangeable series will rotate with another gear of the same series with proper tooth action. It is, therefore, evident that a tooth curve driven in unison with a mating blank, will "generate" in the latter the proper tooth curve to mesh with itself.

187 Bevel Gear Development and Testing Procedure (July/August 1986)

The most conclusive test of bevel and hypoid gears is their operation under normal running conditions in their final mountings. Testing not only maintains quality and uniformity during manufacture, but also determines if the gears will be satisfactory for their intended applications.

188 Engineering Constants (July/August 1986)

Below are listed a variety of commonly used constants arranged numerically to permit ease of reference. Wherever an asterisk (*) is shown, the constant is exact as given, it being generally a mathematical constant or one fixed by definition. In cases where the first constant listed is followed by another in parenthesis, the first is the round number generally used, while the second is the more exact value.

189 Design of Involute Gear Teeth (October/November 1984)

In designing involute gear teeth, it is essential that the fundamental properties of the involute curve be clearly understood. A review of "the Fundamental Laws of the Involute Curve" found in last issue will help in this respect. It has previously been shown that the involute curve has its origin at the base circle. Its length, however, may be anything from zero at the origin or starting point on to infinity. The problem, therefore, in designing gear teeth, is to select that portion of the involute, which will best meet all requirements.

190 Functions of Gearing and Application of the Involute to Gear Teeth (August/September 1984)

Experience has proven that the involute provides the most satisfactory profile for spur and helical gear teeth, and fulfills the requirements for transmitting smooth, uniform angular motion.

191 The Process of Gear Shaving (January/February 1986)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity. The process can also improve tooth surface finish and eliminate, by crowned tooth forms, the danger of tooth end load concentrations in service. Shaving provides for form modifications that reduce gear noise. These modifications can also increase the gear's load carrying capacity, its factor of safety and its service life.

192 Gear Shaving Basics, Part II (January/February 1998)

In our last issue, we covered the basic principles of gear shaving and preparation of parts for shaving. In this issue, we will cover shaving methods, design principles and cutter mounting techniques.

193 Gear Design (May/June 1984)

A gear can be defined as a toothed wheel which, when meshed with another toothed wheel with similar configuration, will transmit rotation from one shaft to another. Depending upon the type and accuracy of motion desired, the gears and the profiles of the gear teeth can be of almost any form.

194 Determination of Gear Ratios (August/September 1984)

Selection of the number of teeth for each gear in a gear train such that the output to input angular velocity ratio is a specified value is a problem considered by relatively few published works on gear design.

195 Influence of Hobbing Tool Generating Scallops on Root Fillet Stress Concentrations (July 2016)

While designing gear and spline teeth, the root fillet area and the corresponding maximum tensile stress are primary design considerations for the gear designer. Root fillet tensile stress may be calculated using macro-geometry values such as module, minor diameter, effective fillet radius, face width, etc.

196 Bevel Gear Cutting Methods (June 2016)

THE FINAL CHAPTER This is the last in the series of chapters excerpted from Dr. Hermann J. Stadtfeld’s Gleason Bevel Gear Technology — a book written for specialists in planning, engineering, gear design and manufacturing. The work also addresses the technical information needs of researchers, scientists and students who deal with the theory and practice of bevel gears and other angular gear systems. While all of the above groups are of course of invaluable importance to the gear industry, it is surely the students who hold the key to its future. And with that knowledge it is reassuring to hear from Dr. Stadtfeld of the enthusiastic response he has received from younger readers of these chapter installments.

197 Face Gears: An Interesting Alternative for Special Applications - Calculation, Production and Use (September/October 2001)

Crown gearings are not a new type of gear system. On the contrary, they have been in use since very early times for various tasks. Their earliest form is that of the driving sprocket, found in ancient Roman watermills or Dutch windmills. The first principles of gear geometry and simple methods of production (shaper cutting) were developed in the 1940s. In the 1950s, however, crown gears' importance declined. Their tasks were, for example, taken over by bevel gears, which were easier to manufacture and could transmit greater power. Current subject literature accordingly contains very little information on crown gears, directed mainly to pointing out their limitations (Ref. 1).

198 Precision Finish Hobbing (July/August 2000)

Nowadays, finish hobbing (which means that there is no post-hobbing gear finishing operation) is capable of producing higher quality gears and is growing in popularity.

199 Carbide Hobbing Case Study (May/June 2002)

Bodine Electric Co. of Chicago, IL., has a 97-year history of fine-and medium-pitch gear manufacturing. Like anywhere else, traditions, old systems, and structures can be beneficial, but they can also become paradigms and obstacles to further improvements. We were producing a high quality product, but our goal was to become more cost effective. Carbide hobbing is seen as a technological innovation capable of enabling a dramatic, rather than an incremental, enhancement to productivity and cost savings.

200 Performance Analysis of Hypoid Gears by Tooth Flank Form Measurement (July/August 2002)

The traditional way of controlling the quality of hypoid gears' tooth flank form is to check the tooth flank contact patterns. But it is not easy to exactly judge the tooth flank form quality by the contact pattern. In recent years, it has become possible to accurately measure the tooth flank form of hypoid gears by the point-to-point measuring method and the scanning measuring method. But the uses of measured data of the tooth flank form for hypoid gears have not yet been well developed in comparison with cylindrical involute gears. In this paper, the tooth flank form measurement of generated face-milled gears, face-hobbed gears and formulate/generated gears are reported. The authors discuss the advantages and disadvantages of scanning and point-to-point measuring of 3-D tooth flank forms of hypoid gears and introduce some examples of uses of measured data for high-quality production and performance prediction.

201 Performance of Skiving Hobs in Finishing Induction Hardened and Carburized Gears (May/June 2003)

In order to increase the load carrying capacity of hardened gears, the distortion of gear teeth caused by quenching must be removed by precision cutting (skiving) and/or grinding. In the case of large gears with large modules, skiving by a carbide hob is more economical than grinding when the highest accuracy is not required.

202 Reducing Production Costs in Cylindrical Gear Hobbing and Shaping (March/April 2000)

Increased productivity in roughing operations for gear cutting depends mainly on lower production costs in the hobbing process. In addition, certain gears can be manufactured by shaping, which also needs to be taken into account in the search for a more cost-effective form of production.

203 Production Increase When Hobbing with Carbide Hobs (January/February 1998)

We are all looking for ways to increase production without sacrificing quality. One of the most cost-effective ways is by improving the substrate material of your hob. Solid carbide hobs are widely used in many applications throughout the world. LMT-Fette was the first to demonstrate the use of solid carbide hobs in 1993 on modern high-speed carbide (HSC) hobbing machines. Since then the process of dry hobbing has been continuously improving through research and product testing. Dry hobbing is proving to be successful in the gear cutting industry as sales for dry hobbing machines have steadily been rising along with the dramatic increase in sales of solid carbide hobs.

204 INFAC Reports on Recent Hobbing and Heat Treating Experiments (July/August 1995)

Chicago- Results of recent studies on residual stress in gear hobbing, hobbing without lubricants and heat treating were reported by representatives of INFAC (Instrumented Factory for Gears) at an industry briefing in March of this year.

205 Cutting Tools Now (May/June 1996)

The cutting tool is basic to gear manufacturing. Whether it's a hob, broach, shaper cutter or EDM wire, not much gets done without it. And the mission of the tool remains the same as always; removing material as quickly, accurately and cost-effectively as possible. Progress in the field tends to be evolutionary, coming gradually over time, but recently, a confluence of emerging technologies and new customer demands has caused significant changes in the machines, the materials and the coatings that make cutting tools.

206 Dry Hobbing Saves Automaker Money, Improves Gear Quality (November/December 1996)

It takes confidence to be the first to invest in new manufacturing technology. But the payback can be significant. That has been the experience at the Ford Motor Company's Transmission & Chassis Division plant at Indianapolis, IN, which boasts the world's first production application of dry hobbing.

207 Dry Hobbing: Another Point of View (March/April 1997)

I would like to comment on David Arnesen's article, "Dry Hobbing Saves Automaker Money, Improves Gear Quality," in the Nov/Dec, 1996 issue.

208 The Two-Sided-Ground Bevel Cutting Tool (May/June 2003)

In the past, the blades of universal face hobbing cutters had to be resharpened on three faces. Those three faces formed the active part of the blade. In face hobbing, the effective cutting direction changes dramatically with respect to the shank of the blade. Depending on the individual ratio, it was found that optimal conditions for the chip removal action (side rake, side relief and hook angle) could just be established by adjusting all major parameters independently. This, in turn, results automatically in the need for the grinding or resharpening of the front face and the two relief surfaces in order to control side rake, hook angle and the relief and the relief angles of the cutting and clearance side.

209 On a Possible Way of Size and Weight Reduction of a Car Transmission (July/August 2003)

Almost any external tooth form that is uniformly spaced around a center can be hobbed. Hobbing is recognized as an economical means of producing spur and helical gears with involute tooth profiles.

210 Gear Macrogeometry (September/October 2015)

I have outsourced gear macrogeometry due to lack of resources. Now I received the output from them and one of the gears is with —0.8× module correction factor for m = 1.8 mm gear. Since bending root stress and specific slide is at par with specification, but negative correction factor —0.8× module — is quite high — how will it influence NVH behavior/transmission error? SAP and TIF are very close to 0.05 mm; how will that influence the manufacturing/cost?

211 Hard-Finishing Spiral Bevel Gears (March/April 2016)

Could you explain to me the difference between spiral bevel gear process face hobbing-lapping, face milling-grinding and Klingelnberg HPG? Which one is better for noise, load capacity and quality?

212 Practical Gear Characteristics: Process Characteristics of the Most Popular Cutting Methods (March/April 2016)

The cutting process consists of either a roll only (only generating motion), a plunge only or a combination of plunging and rolling. The material removal and flank forming due to a pure generating motion is demonstrated in the simplified sketch in Figure 1 in four steps. In the start roll position (step 1), the cutter profile has not yet contacted the work. A rotation of the work around its axis (indicated by the rotation arrow) is coupled with a rotation of the cutter around the axis of the generating gear (indicated by the vertical arrow) and initiates a generating motion between the not-yet-existing tooth slot of the work and the cutter head (which symbolizes one tooth of the generating gear).

213 The Comprehensive Gear Grind (June 2016)

Looking for some simple yet useful advice heading into IMTS 2016? Never second guess your machine tool investment. Flexibility is a mandatory requirement in gear manufacturing today. Accuracy, reliability and efficiency must improve with each new machine tool purchase. Innovation is always the end game. So it comes as no surprise that IMTS 2016 attendees will have plenty of gear grinding technologies to consider this fall.

214 Simulation of Deviations in Hobbing and Generation Grinding (September/October 2014)

The hobbing and generation grinding production processes are complex due to tool geometry and kinematics. Expert knowledge and extensive testing are required for a clear attribution of cause to work piece deviations. A newly developed software tool now makes it possible to simulate the cutting procedure of the tool and superimpose systematic deviations on it. The performance of the simulation software is illustrated here with practical examples. The new simulation tool allows the user to accurately predict the effect of errors. With this knowledge, the user can design and operate optimal, robust gearing processes.

215 The Influence of Tool Tolerances on the Gear Quality of a Gear Manufactured by an Indexable Insert Hob (July 2014)

Recently, a new type of hob with carbide inserts has been introduced, providing higher cutting speeds, longer tool life and higher feed rates when compared to re-grindable, high-speed steel hobs. But with this kind of hob, new challenges occur due to positional errors of the cutting edges when mounted on the tool. These errors lead to manufacturing errors on the gear teeth which must be controlled. In this paper, the tooth quality of a gear manufactured by hobs with different quality classes is analyzed using a simulation model in combination with Monte Carlo methods.

216 Progress in Gear Milling (January/February 2013)

Sandvik presents the latest in gear milling technologies.

217 Reinventing Cutting Tool Production at Gleason (May 2013)

Investment in advanced new manufacturing technologies is helping to reinvent production processes for bevel gear cutters and coarse-pitch hobs at Gleason - delivering significant benefits downstream to customers seeking shorter deliveries, longer tool life and better results.

218 Liebherr Touts Technology at Latest Gear Seminar (June/July 2013)

For two days in Saline, Michigan, Liebherr's clients, customers and friends came together to discuss the latest gear products and technology. Peter Wiedemann, president of Liebherr Gear Technology Inc., along with Dr.-Ing. Alois Mundt, managing director, Dr.-Ing. Oliver Winkel, head of application technology, and Dr.-Ing. Andreas Mehr, technology development shaping and grinding, hosted a variety of informative presentations.

219 The Technology Shift (May 2014)

Decades ago, technology shifted from HSS to indexable inserts in turning and milling. This movement wasn't immediately realized in gear hobbing because coated PM-HSS hobs and complex gear profiles remained highly effective and productive methods. Only fairly recently have gear manufacturers started to take a serious look at indexable technology to cut gear teeth.

220 Gears for Nonparallel Shafts (September/October 1986)

Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.