increase torque - Search Results

Articles About increase torque

Articles are sorted by RELEVANCE. Sort by Date.

1 Gear Transmission Density Maximization (November/December 2011)

This paper presents an approach that provides optimization of both gearbox kinematic arrangement and gear tooth geometry to achieve a high-density gear transmission. It introduces dimensionless gearbox volume functions that can be minimized by the internal gear ratio optimization. Different gearbox arrangements are analyzed to define a minimum of the volume functions. Application of asymmetric gear tooth profiles for power density maximization is also considered.

2 Innovative Steel Design and Gear Machining of Advanced Engineering Steel (August 2016)

The increasing demands in the automotive industry for weight reduction, fuel efficiency and a reduced carbon footprint need to be addressed urgently. Up until now, widely used conventional steels have lived up to expectations. However, with more stringent emissions standards, demands on materials are increasing. Materials are expected to perform better, resulting in a need for increased fatigue strength. A possibility to increase torque on current generations without design changes can be achieved by selecting suitable materials.

3 A Logical Procedure To Determine Initial Gear Size (November/December 1986)

When a gear set is to be designed for a new application, the minimum size gears with the required capacity are desired. These gears must be capable of meeting the power, speed, ratio, life, and reliability requirements.

4 Evaluation of Carburized & Ground Face Gears (September/October 2000)

Designers are constantly searching for ways to reduce rotocraft drive system weight. Reduced weight can increase the payload, performance, or power density of current and future systems. One example of helicopter transmission weight reduction was initiated as part of the United States Army Advanced Rotocraft Transmission program. This example used a split-torque, face-gear configuration concept (Ref. 1). compared to a conventional design with spiral-bevel gears, the split-torque, face-gear design showed substantial weight savings benefits. Also, the use of face gears allows a wide-range of possible configurations with technical and economic benefits (Ref. 2).