Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

interference - Search Results

Related Companies

KISSsoft USA LLC
The KISSsoft calculation program has been developed to focus on the needs of mechanical engineers and power transmission profes

Related Power Transmission Companies

New Power Electric (USA) LLC
Whatever your needs in variable speed applications, you can trust our 200/300/400/500 series PMDC motors. Designed and built under the highest quality process for general industrial needs, our products are there to provide reliable performance for a long time.

Articles About interference


1 Avoiding Interference In Shaper-Cut Gears (January/February 1996)

In the process of developing gear trains, it occasionally occurs that the tip of one gear will drag in the fillet of the mating gear. The first reaction may be to assume that the outside diameter of the gear is too large. This article is intended to show that although the gear dimensions follow AGMA guidelines, if the gear is cut with a shaper, the cutting process may not provide sufficient relief in the fillet area and be the cause of the interference.

2 The Geometric Design of Internal Gear Pairs (May/June 1990)

The paper describes a procedure for the design of internal gear pairs, which is a generalized form of the long and short addendum system. The procedure includes checks for interference, tip interference, undercutting, tip interference during cutting, and rubbing during cutting.

3 On The Interference of Internal Gearing (July/August 1989)

Since size and efficiency are increasingly important considerations in modern machinery, the trend is gear design is to use planetary gearing instead of worm gearing and multi-stage gear boxes. Internal gearing is an important part of most of planetary gear assemblies. In external gearing, if the gears are standard (of no-modified addenda), interference rarely happens. But in an internal gearing, especially in some new types of planetary gears, such as the KHV planetary, the Y planetary, etc., (1) various types of interference may occur. Therefore, avoiding interference is of significance for the design of internal gearing.

4 Design of Internal Helical Gears (March/April 1989)

In principal, the design of internal helical gear teeth is the same as that for external helical gears. Any of the basic rack forms used for external helical gears may be applied to internal helical gears. The internal gear drive, however, has several limitations; not only all those which apply to external gears, but also several others which are peculiar to internal gears. As with external gears, in order to secure effective tooth action, interferences must be avoided. The possible interferences on an internal gear drive are as follows: 1. Involute interference. To avoid this, all of the working profile of the internal tooth must be of involute form.

5 Point-Surface-Origin Macropitting Caused by Geometric Stress Concentration (January/February 2011)

Point-surface-origin (PSO) macropitting occurs at sites of geometric stress concentration (GSC) such as discontinuities in the gear tooth profile caused by micropitting, cusps at the intersection of the involute profile and the trochoidal root fillet, and at edges of prior tooth damage, such as tip-to-root interference. When the profile modifications in the form of tip relief, root relief, or both, are inadequate to compensate for deflection of the gear mesh, tip-to-root interference occurs. The interference can occur at either end of the path of contact, but the damage is usually more severe near the start-of-active-profile (SAP) of the driving gear.

6 Classification of Types of Gear Tooth Wear - Part II (January/February 1993)

The first part of this article included abrasive wear with two bodies, streaks and scoring, polishing, and hot and cold scuffing. This part will deal with three-body wear, scratches or grooves, and interference wear. Normal, moderate, and excessive wear will be defined, and a descriptive chart will be presented.

7 Area of Existence of Involute Gears (January/February 2010)

This paper presents a unique approach and methodology to define the limits of selection for gear parameters. The area within those limits is called the “area of existence of involute gears” (Ref. 1). This paper presents the definition and construction of areas of existence of both external and internal gears. The isograms of the constant operating pressure angles, contact ratios and the maximum mesh efficiency (minimum sliding) isograms, as well as the interference isograms and other parameters are defined. An area of existence allows the location of gear pairs with certain characteristics. Its practical purpose is to define the gear pair parameters that satisfy specific performance requirements before detailed design and calculations. An area of existence of gears with asymmetric teeth is also considered.

8 Form Diameter of Gears (May/June 1989)

One of the most frequently neglected areas of gear design is the determination of "form diameter". Form diameter is that diameter which specifies the transition point between the usable involute profile and the fillet of the tooth. Defining this point is important to prevent interference with the tip of the mating gear teeth and to enable proper preshave machining when the gear is to be finished with a shaving operation.

News Items About interference

1 Schunk?s New Toolholder Designed for Low Interference Applications (April 19, 2006)
The TRIBOS-RM from Schunk is designed for cutting speeds up to 50,000 rpm while offering run-out accuracy of less than three microns. The... Read News