Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

liability - Search Results

Related Companies

Seco/Warwick Corp.
Wenzel America

Related Power Transmission Companies

BRECOflex CO., L.L.C.
BRECOflex CO., L.L.C. ? The world leader in the polyurethane timing belt industry sets higher standards with new state-of-the-art products. BRECOflex timing belts, pulleys and accessories are scientifically designed and manufactured for undeviatin...

CENTA Corp.
Global leader in the innovation and manufacture of flexible couplings, torsional couplings, and drive shaft solutions for marine and industrial applications.

DieQua Corp.
Thanks for checking us out! Diequa is a manufacturer and supplier of a wide range of premium quality power transmission and motion control gear drive and connecting components designed specifically to enhance the performance of your machine designs. These include speed reducers, gearmotors, servo planetary reducers, spiral bevel gearboxes, shaft phasing gearboxes, shaft couplings, torque limiters, and screw jack lifting systems.

Lafert North America
Your best source for metric motors, gearboxes and coolant pumps, by providing quality products with the highest level of service in the industry.

New Power Electric (USA) LLC
Whatever your needs in variable speed applications, you can trust our 200/300/400/500 series PMDC motors. Designed and built under the highest quality process for general industrial needs, our products are there to provide reliable performance for a long time.

Articles About liability


Articles are sorted by RELEVANCE. Sort by Date.

1 Understanding Oil Analysis: How it Can Improve Reliability of Wind Turbine Gearboxes (November/December 2013)

Historically, wind turbine gearbox failures have plagued the industry. Yet an effective oil analysis program will increase the reliability and availability of your machinery, while minimizing maintenance costs associated with oil change-outs, labor, repairs and downtime. Practical action steps are presented here to improve reliability.

2 Product Liability Defense (January/February 1992)

It's every gear manufacturer's nightmare. Your company had been named as a defendant in a product liability suit - one involving serious injuries and death. You're facing endless court appearances, monumental legal fees, and, possibly, seven figure settlements our of your coffers. The very existence of your business could be on the line. The question is, how do you prevent this nightmare from becoming a painful reality.

3 Designing Reliability Into Industrial Gear Drives (September/October 1998)

The primary objective in designing reliable gear drives is to avoid failure. Avoiding failure is just as important for the manufacturer and designer as it is for the end user. Many aspects should be considered in order to maximize the potential reliability and performance of installed gearing.

4 Product Liability for Engineers (July/August 1998)

This textbook, written for college level engineering students, gives a basic grounding in the complexities of product liability law. It also provides useful information to those of us involved in the manufacturing of gears and gear systems in that the fundamental concepts apply to all types of manufacturers.

5 Design of Oil-Lubricated Machine Components for Life and Reliability (November/December 2007)

This article summarizes the use of laboratory fatigue data for bearings and gears coupled with probabilistic life prediction and EHD theories to predict the life and reliability of a commercial turboprop gearbox.

6 Atmospher vs. Vacuum Carburizing (March/April 2002)

In recent years, improvements in the reliability of the vacuum carburizing process have allowed its benefits to be realized in high-volume, critical component manufacturing operations. The result: parts with enhanced hardness and mechanical properties.

7 Consideration of Moving Tooth Load in Gear Crack Propagation Predictions (January/February 2002)

Effective gear designs balance strength, durability, reliability, size, weight, and cost. Even effective designs, however, can have the possibility of gear cracks due to fatigue. In addition, truly robust designs consider not only crack initiation, but also crack propagation trajectories. As an example, crack trajectories that propagate through the gear tooth are the preferred mode of failure compared to propagation through the gear rim. Rim failure will lead to catastrophic events and should be avoided. Analysis tools that predict crack propagation paths can be a valuable aid to the designer to prevent such catastrophic failures.

8 Properties of Tooth Surfaces due to Gear Honing with Electroplated Tools (November/December 2001)

In recent years, the demands for load capacity and fatigue life of gears constantly increased while weight and volume had to be reduced. To achieve those aims, most of today's gear wheels are heat treated so tooth surfaces will have high wear resistance. As a consequence of heat treatment, distortion unavoidably occurs. With the high geometrical accuracy and quality required for gears, a hard machining process is needed that generates favorable properties on the tooth surfaces and the near-surface material with high reliability.

9 Design and Optimization of Planetary Gears Considering All Relevant Influences (November/December 2013)

Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.

10 Reverse Engineering of Pure Involute Cylindrical Gears Using Conventional Measurement Tools (January/February 2000)

Designing a gear set implies a considerable effort in the determination of the geometry that fulfills the requirements of load capacity, reliability, durability, size, etc. When the objective is to design a new set of gears, there are many alternatives for the design, and the designer has the freedom to choose among them. Reverse engineering implies an even bigger challenge to the designer, because the problem involves already manufactured gears whose geometry is generally unknown. In this case, the designer needs to know the exact geometry of the actual gears in order to have a reference for the design.

11 What We Learned @IMTS (October 2012)

They only let the Addendum team on the show floor for one day (they said it was something to do with their liability insurance...), but here's what our intrepid team of gear fanatics noticed at IMTS 2012.

12 How Bearing Design Improves Gearbox Performance (September 2012)

Gearbox performance, reliability, total cost of ownership (energy cost), overall impact on the environment, and anticipation of additional future regulations are top-of-mind issues in the industry. Optimization of the bearing set can significantly improve gearbox performance.

13 Hiring & Firing the Older Employee (January/February 1993)

Given the current economic and legal climate, matters of hiring and firing are cause for considerable concern among managers. In addition to all the other factors to be considered, employers must be wary of exactly how these procedures should be carried out, so that the company is not left open to lawsuits based on charges of discrimination of one kind or another. The reasons given for a particular employment decision may be as crucial to determining liability as the decision itself.

14 Comparison of PM-HSS and Cemented Carbide Tools in High-Speed Gear Hobbing (September/October 2009)

This article examines the dry hobbing capabilities of two cutting tool materials—powder metallurgical high-speed steel (PM-HSS) and cemented carbide. Cutting trials were carried out to analyze applicable cutting parameters and possible tool lives as well as the process reliability. To consider the influences of the machinability of different workpiece materials, a case hardening steel and a tempered steel were examined.

15 An International Wind Turbine Gearbox Standard (July 2009)

Industrial gear standards have been used to support reliability through the specification of requirements for design, manufacturing and verification. The consensus development of an international wind turbine gearbox standard is an example where gear products can be used in reliable mechanical systems today. This has been achieved through progressive changes in gear technology, gear design methods and the continual development and refinement of gearbox standards.

16 Future Demands Next Generation of Standards and Practices in Gear Industry (May 2010)

Gear manufacturers are moving into an era that will see changes in both engineering practices and industry standards as new end-products evolve. Within the traditional automotive industry, carbon emission reduction legislation will drive the need for higher levels of efficiency and growth in electric and hybrid vehicles. Meanwhile, the fast growing market of wind turbines is already opening up a whole new area of potential for gearbox manufacturers, but this industry is one that will demand reliability, high levels of engineering excellence and precision manufacturing.

17 A Logical Procedure To Determine Initial Gear Size (November/December 1986)

When a gear set is to be designed for a new application, the minimum size gears with the required capacity are desired. These gears must be capable of meeting the power, speed, ratio, life, and reliability requirements.

18 Gear Wear Caused By Contaminated Oils (September/October 1996)

The diagnosis and prevention of gear tooth and bearing wear requires the discovery and understanding of the particular mechanism of wear, which in turn indicates the best method of prevention. Because a gearbox is a tribologically dependent mechanism, some understanding of gear and bearing tribology is essential for this process. Tribology is the general term for the study and practice of lubrication, friction and wear. If tribology is neglected or considered insignificant, poor reliability and short life will result.

19 EHL Film Thickness, Additives and Gear Surface Fatigue (May/June 1995)

Aircraft transmissions for helicopters, turboprops and geared turbofan aircraft require high reliability and provide several thousand hours of operation between overhauls. In addition, They should be lightweight and have very high efficiency to minimize operating costs for the aircraft.

20 Standard Issues (November/December 1996)

Standards are unlike gears themselves: mundane, but complex, ubiquitous and absolutely vital. Standards are a lingua franca, providing a common language with reference points for evaluating product reliability and performance for manufacturers and users. The standards development process provides a scientific forum for discussion of product design, materials and applications, which can lead to product improvement. Standards can also be a powerful marketing tool for either penetrating new markets or protecting established ones.