Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

load capacity - Search Results

Related Companies

Solar Atmospheres
Solar Atmospheres specializes in vacuum heat treating, vacuum nitriding, vacuum brazing as well as vacuum carburizing services. With processing expertise and personalized service, Solar will process your small or large parts efficiently with our unique range of 40 vacuum furnaces. Sizes range from lab furnaces to the world's largest commercial vacuum furnace.

Related Power Transmission Companies

Cone Drive
Cone Drive Gearing Solutions, based in Traverse City, Michigan, is an industry leader in motion control and industrial power transmission solutions. Cone Drive has extensive experience in many industries; including solar, metals, mining, defense, oil & gas, food packaging & process, pulp & paper, plastics, entertainment and more. Cone Drive is the world leader in double enveloping worm gear technology, which delivers solutions with the highest torque and shock load capacity in the smallest amount of space. Cone Drive's products are renowned for their durability and precision.

NSK Corporation
NSK is a global manufacturer of bearings and other motion & control products. It operates 51 manufacturing facilities worldwide and 12 global technology centers of excellence that draw from world-leading industry knowledge and manufacturing experience. NSK's dedication to engineering innovation results in state-of-the-art products designed to improve performance and extend service life. NSK's unique Asset Improvement Program helps customers improve productivity and efficiency to significantly reduce operating costs. The company’s industry and process-specific expertise and solutions are applied to identify and solve problems that are limiting productivity. This enables customers to achieve improved performance, enhanced competitiveness and increased profitability.

Articles About load capacity


1 CBN Gear Grinding - A Way to Higher Load Capacity (November/December 1993)

Because of the better thermal conductivity of CBN abrasives compared to that of conventional aluminum oxide wheels, CBN grinding process, which induces residual compressive stresses into the component, and possibly improves the subsequent stress behavior. This thesis is the subject of much discussion. In particular, recent Japanese publications claim great advantages for the process with regard to an increased component load capacity, but do not provide further details regarding the technology, test procedures or components investigated. This situation needs clarification, and for the this reason the effect of the CBN grinding material on the wear behavior and tooth face load capacity of continuously generated ground gears was further investigated.

2 Comparative Load Capacity Evaluation of CBN-Finished Gears (May/June 1990)

Cubic boron nitride (CBN) finishing of carburized gearing has been shown to have certain economic and geometric advantages and, as a result, it has been applied to a wide variety of precision gears in many different applications. In critical applications such as aerospace drive systems, however, any new process must be carefully evaluated before it is used in a production application. Because of the advantages associated with this process, a test program was instituted to evaluate the load capacity of aerospace-quality gears finished by the CBN process as compared to geometrically identical gears finished by conventional grinding processes. This article presents a brief description of the CBN process, its advantages in an aerospace application, and the results of an extensive test program conducted by Boeing Helicopters (BH) aimed at an evaluation of the effects of this process on the scoring, surface durability, and bending fatigue properties of spur gears. In addition, the results of an x-ray diffraction study to determine the surface and subsurface residual stress distributions of both shot-peened and nonshot-peened CBN-ground gears as compared to similar conventionally ground gears are also presented.

3 Scoring Load Capacity of Gears Lubricated with EP-Oils (October/November 1984)

The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.

4 Pitting Load Capacity of Helical Gears (May 2008)

Influences of Load Distribution and Tooth Flank Modifications as Considered in a New, DIN/ISO-Compatible Calculation Method

5 New Methods for the Calculation of the Load Capacity of Bevel and Hypoid Gears (June/July 2013)

Flank breakage is common in a number of cylindrical and bevel gear applications. This paper introduces a relevant, physically based calculation method to evaluate flank breakage risk vs. pitting risk. Verification of this new method through testing is demonstrably shown.

6 Improvement in Load Capacity of Crossed Helical Gears (January/February 1987)

Crossed helical gear sets are used to transmit power and motion between non-intersecting and non-parallel axes. Both of the gears that mesh with each other are involute helical gears, and a point contact is made between them. They can stand a small change in the center distance and the shaft angle without any impairment in the accuracy of transmitting motion.

7 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part I (March/April 1987)

The load capacity rating of gears had its beginning in the 18th century at Leiden University when Prof. Pieter van Musschenbroek systematically tested the wooden teeth of windmill gears, applying the bending strength formula published by Galilei one century earlier. In the next centuries several scientists improved or extended the formula, and recently a Draft International Standard could be presented.

8 Influence of Relative Displacements Between Pinion and Gear on Tooth Root Stresses of Spiral Bevel Gears (July/August 1985)

The manufacturing quality of spiral bevel gears has achieved a very high standard. Nevertheless, the understanding of the real stress conditions and the influences. of certain parameters is not satisfactory.

9 Increaed Load Capacity of Worm Gears by Optimizing the Worm Wheel Bronze (May/June 2002)

The lifetime of worm gears is usually delimited by the bronze-cast worm wheels. The following presents some optimized cast bronzes, which lead to a doubling of wear resistance.

10 Case Depth and Load Capacity of Case-Carburized Gears (March/April 2002)

Compared to non-heat-treated components, case-carburized gears are characterized by a modified strength profile in the case-hardened layer. The design of case-carburized gears is based on defined allowable stress numbers. These allowable stress numbers are valid only for a defined "optimum" case depth. Adequate heat treatment and optimum case depth guarantee maximum strength of tooth flank and tooth root.

11 Reverse Engineering of Pure Involute Cylindrical Gears Using Conventional Measurement Tools (January/February 2000)

Designing a gear set implies a considerable effort in the determination of the geometry that fulfills the requirements of load capacity, reliability, durability, size, etc. When the objective is to design a new set of gears, there are many alternatives for the design, and the designer has the freedom to choose among them. Reverse engineering implies an even bigger challenge to the designer, because the problem involves already manufactured gears whose geometry is generally unknown. In this case, the designer needs to know the exact geometry of the actual gears in order to have a reference for the design.

12 Tooth Fillet Profile Optimization for Gears with Symmetric and Asymmetric Teeth (September/October 2009)

The gear tooth fillet is an area of maximum bending stress concentration. However, its profile is typically less specified in the gear drawing and hardly controlled during gear inspection in comparison with the gear tooth flanks. This paper presents a fillet profile optimization technique for gears with symmetric and asymmetric teeth based on FEA and a random search method. It allows achieving substantial bending stress reduction in comparison with traditionally designed gears. This bending stress reduction can be traded for higher load capacity, longer lifetime, lower noise and vibration and cost reduction.

13 Design Guidelines for High-Capacity Bevel Gear Systems (January/February 1992)

The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum. A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form: Integrated gear/shaft/bearing systems Effects of rim thickness on gear tooth stresses Resonant response

14 Hard Finishing and Fine Finishing Part 1 (September/October 1989)

Profitable hard machining of tooth flanks in mass production has now become possible thanks to a number of newly developed production methods. As used so far, the advantages of hard machining over green shaving or rolling are the elaborately modified tooth flanks are produced with a scatter of close manufacturing tolerances. Apart from an increase of load capacity, the chief aim is to solve the complex problem of reducing the noise generation by load-conditioned kinematic modifications of the tooth mesh. In Part II, we shall deal with operating sequences and machining results and with gear noise problems.

15 Measurement of Directly Designed Gears with Symmetric and Asymmetric Teeth (January/February 2011)

In comparison with the traditional gear design approach based on preselected, typically standard generating rack parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear measurement methodology. This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical, external and internal gears with symmetric and asymmetric teeth.

16 A New Method of Desinging Worm Gears (July/August 1989)

The first part of this article describes the analytical design method developed by the author to evaluate the load capacity of worm gears. The second part gives a short description of the experimental program and testing resources being used at CETIM to check the basic assumptions of the analytical method; and to determine on gears and test wheels the surface pressure endurance limits of materials that can be used for worm gears. The end of the article compares the results yielded by direct application of the method and test results.

17 Systematic Investigations on the Influence of Case Depth on the Pitting and Bending Strength of Case Carburized Gears (July/August 2005)

The gear designer needs to know how to determine an appropriate case depth for a gear application in order to guarantee the required load capacity.

18 Industry Forum (July/August 1985)

In response to Ed Uberts letter, we have come a long way in gearing since WWII. The Europeans do use long addendum pinions in many cases. This modification does improve load capacity, sliding conditions and the working life of a gearset. When modifying a pinion tooth it is necessary to modify the gear tooth or adjust the center distance accordingly but we will leave that to the designers.

19 The Anatomy of a Micropitting-Induced Tooth Fracture Failure (June 2010)

Micropitting has become a major concern in certain classes of industrial gear applications, especially wind power and other relatively highly loaded, somewhat slow-speed applications, where carburized gears are used to facilitate maximum load capacity in a compact package. While by itself the appearance of micropitting does not generally cause much perturbation in the overall operation of a gear system, the ultimate consequences of a micropitting failure can, and frequently are, much more catastrophic.

20 Determination and Optimization of the Contact Pattern of Worm Gears (March/April 2003)

The load capacity of worm gears is mainly influenced by the size and the position of the contact pattern.

21 Design and Optimization of Planetary Gears Considering All Relevant Influences (November/December 2013)

Light-weight construction and consideration of available resources result in gearbox designs with high load capacity and power density. At the same time, expectations for gear reliability are high. Additionally, there is a diversity of planetary gears for different applications.

22 Gear Ratio Epicyclic Drives Analysis (June 2014)

It has been documented that epicyclic gear stages provide high load capacity and compactness to gear drives. This paper will focus on analysis and design of epicyclic gear arrangements that provide extremely high gear ratios. Indeed, a special, two-stage planetary arrangement may utilize a gear ratio of over one hundred thousand to one. This paper presents an analysis of such uncommon gear drive arrangements and defines their major parameters, limitations, and gear ratio maximization approaches. It also demonstrates numerical examples, existing designs, and potential applications.

23 Low Loss Gears (June 2007)

In most transmission systems, one of the main power loss sources is the loaded gear mesh. In this article, the influences of gear geometry parameters on gear efficiency, load capacity, and excitation are shown.

24 Properties of Tooth Surfaces due to Gear Honing with Electroplated Tools (November/December 2001)

In recent years, the demands for load capacity and fatigue life of gears constantly increased while weight and volume had to be reduced. To achieve those aims, most of today's gear wheels are heat treated so tooth surfaces will have high wear resistance. As a consequence of heat treatment, distortion unavoidably occurs. With the high geometrical accuracy and quality required for gears, a hard machining process is needed that generates favorable properties on the tooth surfaces and the near-surface material with high reliability.

25 Large Scores and Radial Cracks on Case-Hardened Worms (May/June 2003)

In the last couple of years, many research projects dealt with the determination of load limits of cylindrical worm gears. These projects primarily focused on the load capacity of the worm wheel, whereas the worm was neglected. This contribution presents investigations regarding damages such as large scores and cracks on the flanks of case-hardened worms.

26 Calculation of Tooth Root Load Carrying Capacity of Beveloid Gears (June 2014)

In this paper, two developed methods of tooth root load carrying capacity calculations for beveloid gears with parallel axes are presented, in part utilizing WZL software GearGenerator and ZaKo3D. One method calculates the tooth root load-carrying capacity in an FE-based approach. For the other, analytic formulas are employed to calculate the tooth root load-carrying capacity of beveloid gears. To conclude, both methods are applied to a test gear. The methods are compared both to each other and to other tests on beveloid gears with parallel axes in test bench trials.

27 FZG Rig-Based Testing of Flank Load-Carrying Capacity Internal Gears (June/July 2012)

Micropitting, pitting and wear are typical gear failure modes that can occur on the flanks of slowly operated and highly stressed internal gears. However, the calculation methods for the flank load-carrying capacity have mainly been established on the basis of experimental investigations of external gears. This paper describes the design and functionality of the newly developed test rigs for internal gears and shows basic results of the theoretical studies. It furthermore presents basic examples of experimental test results.

28 Influence of Grinding Burn on Pitting Capacity (August 2008)

This paper intends to determine the load-carrying capacity of thermally damaged parts under rolling stress. Since inspection using real gears is problematic, rollers are chosen as an acceptable substitute. The examined scope of thermal damage from hard finishing extends from undamaged, best-case parts to a rehardening zone as the worst case. Also, two degrees of a tempered zone have been examined.

29 Surface Damage Caused by Gear Profile Grinding and its Effects on Flank Load Carrying Capacity (September/October 2004)

Instances of damage to discontinuous form ground and surface-hardened gears, especially of large scale, have recently increased. This may be attributed partly to a faulty grinding process with negative effects on the surface zones and the surface properties.

30 Load Carrying Capacity of Screw Helical Gears with Steel Pinions and Plastic Wheels (July/August 2004)

There is an increasing significance of screw helical and worm gears that combine use of steel and plastics. This is shown by diverse and continuously rising use in the automotive and household appliance industries. The increasing requirements for such gears can be explained by the advantageous qualities of such a material combination in comparison with that of the traditional steel/bronze pairing.

31 The Effect of Manufaturing Microgeometry Variations on the Load Distribution Factor and on Gear Contact and Root Stresses (July 2009)

Traditionally, gear rating procedures consider manufacturing accuracy in the application of the dynamic factor, but only indirectly through the load distribution are such errors in the calculation of stresses used in the durability and gear strength equations. This paper discusses how accuracy affects the calculation of stresses and then uses both statistical design of experiments and Monte Carlo simulation techniques to quantify the effects of different manufacturing and assembly errors on root and contact stresses.

32 Generating Interchangeable 20-Degree Spur Gear Sets with Circular Fillets to Increase Load Carrying Capacity (July/August 2006)

This article presents a new spur gear 20-degree design that works interchangeably with the standard 20-degree system and achieves increased tooth bending strength and hence load carrying capacity.

33 Size and Material Influence on the Tooth Root, Pitting, Scuffing and Wear Load-Carrying Capacity of Fine-Module Gears (September 2011)

In this study, limiting values for the load-carrying-capacity of fine-module gears within the module range 0.3–1.0 mm were determined and evaluated by comprehensive, experimental investigations that employed technical, manufacturing and material influence parameters.

34 Flank Load Carrying Capacity and Power Loss Reduction by Minimized Lubrication (May 2011)

The objective of this study was to investigate the limits concerning possible reduction of lubricant quantity in gears that could be tolerated without detrimental effects on their load carrying capacity.

35 Nonstandard Tooth Proportions (June 2007)

With the right selection of nonstandard center distance and tool shifting, it may be possible to use standard tools to improve the gear set capacity with a considerable reduction in cost when compared to the use of special tools.

36 Application of Miner's Rule to Industrial Gear Drives (January/February 1990)

We need a method to analyze cumulative fatigue damage to specify and to design gear drives which will operate under varying load. Since load is seldom constant, most applications need this analysis.

37 Analysis of Load Distribution in Planet Gear Bearings (September 2011)

In epicyclic gear sets designed for aeronautical applications, planet gears are generally supported by spherical roller bearings with the bearing outer race integral to the gear hub. This article presents a new method to compute roller load distribution in such bearings where the outer ring can’t be considered rigid.

38 Comparison of Test Rig and Field Measurement Results on Gearboxes for Wind Turbines (October 2011)

This article describes some of the most important tests for prototypes conducted at Winergy AG during the product development process. It will demonstrate that the measurement results on the test rig for load distribution are in accordance with the turbine measurements.

39 Load-Sharing Model for Polymer Cylindrical Gears (November/December 2011)

This paper presents an original method to compute the loaded mechanical behavior of polymer gears. Polymer gears can be used without lubricant, have quieter mesh, are more resistant to corrosion, and are lighter in weight. Therefore their application fields are continually increasing. Nevertheless, the mechanical behavior of polymer materials is very complex because it depends on time, history of displacement and temperature. In addition, for several polymers, humidity is another factor to be taken into account. The particular case of polyamide 6.6 is studied in this paper.

40 The Effect of Start-Up Load Conditions on Gearbox Performance and Life Failure Analysis, With Supporting Case Study (June 2009)

If a gear system is run continuously for long periods of time—or if the starting loads are very low and within the normal operating spectrum—the effect of the start-up conditions may often be insignificant in the determination of the life of the gear system. Conversely, if the starting load is significantly higher than any of the normal operating conditions, and the gear system is started and stopped frequently, the start-up load may, depending on its magnitude and frequency, actually be the overriding, limiting design condition.

41 Longitudinal Load Distribution Factor of Helical Gears (July/August 1985)

The contact lines of a pair of helical gears move diagonally on the engaged tooth faces and their lengths consequently vary with the rotation of the gears.

42 Thermal Behavior of Helical Gears (May 2007)

An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied.

43 Experience with Large, High-Speed Load Gears (July 2007)

The main theme of this article is high-capacity, high-speed load gears in a power transmission range between 35 MW and 100 MW for generators and turbo-compressors driven by gas or steam turbines.

44 An Investigation of the Influence of Shaft Misalignment on Bending Stresses of Helical Gears with Lead Crown (November/December 2008)

In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.

45 Application and Improvement of Face Load Factor Determination Based on AGMA 927 (May 2014)

The face load factor is one of the most important items for a gear strength calculation. Current standards propose formulae for face load factor, but they are not always appropriate. AGMA 927 proposes a simpler and quicker algorithm that doesn't require a contact analysis calculation. This paper explains how this algorithm can be applied for gear rating procedures.

46 Controlling Tooth Loads In Helical Gears (March/April 1986)

Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel shafts.

47 Effect of Extended Tooth Contact on the Modeling of Spur Gear Transmissions (July/August 1994)

In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated, and the individual tooth load is overstated, especially for heavily loaded gears. This article compares the static transmission error and dynamic load of heavily loaded, low-contact-ratio spur gears when the effect of tooth flexibility has been considered and when it has been ignored. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.

48 Tooth Root Optimization of Powder Metal Gears - Reducing Stress from Bending and Transient Loads (June/July 2013)

This paper will provide examples of stress levels from conventional root design using a hob and stress levels using an optimized root design that is now possible with PM manufacturing. The paper will also investigate how PM can reduce stresses in the root from transient loads generated by abusive driving.

49 Load Distribution Analysis of Spline Joints (May 2014)

A finite elements-based contact model is developed to predict load distribution along the spline joint interfaces; effects of spline misalignment are investigated along with intentional lead crowning of the contacting surfaces. The effects of manufacturing tooth indexing error on spline load distributions are demonstrated by using the proposed model.

50 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

51 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

52 Practical Analysis of Highly-Loaded Gears by Using the Modified-Scoring Index Calculation Method (September/October 1986)

The power of high speed gears for use in the petrochemical industry and power stations is always increasing. Today gears with ratings of up to 70,000kW are already in service. For such gears, the failure mode of scoring can become the limiting constraint. The validity of an analytical method to predict scoring resistance is, therefore, becoming increasingly important.

53 Influence of Geometrical Parameters on the Gear Scuffing Criterion - Part 2 (May/June 1987)

In ParI 1 several scuffing (scoring) criteria were shown ultimately to converge into one criterion, the original flash temperature criterion according to Blok. In Part 2 it will be shown that all geometric influences may be concentrated in one factor dependent on only four independent parameters, of which the gear ratio, the number of teeth of the pinion, and the addendum modification coefficient of the pinion are significant.

54 A Computer Solution for the Dynamic Load, Lubricant Film Thickness, and Surface Temperatures in Spiral-Bevel Gears (March/April 1986)

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

55 Introduction to ISO 6336 What Gear Manufacturers Need to Know (July/August 1998)

ISO 6336 Calculation of Load Capacity of Spur and Helical Gears was published in 1997 after 50 years of effort by an international committee of experts whose work spanned three generations of gear technology development. It was a difficult compromise between the existing national standards to get a single standard published which will be the basis for future work. Many of the compromises added complication to the 1987 edition of DIN 3990, which was the basic document.