Home | Advertise | Subscribe

Magazine | Newsletter | Product Alerts | Blog

macropitting - Search Results

Articles About macropitting


Articles are sorted by RELEVANCE. Sort by Date.

1 Point-Surface-Origin Macropitting Caused by Geometric Stress Concentration (January/February 2011)

Point-surface-origin (PSO) macropitting occurs at sites of geometric stress concentration (GSC) such as discontinuities in the gear tooth profile caused by micropitting, cusps at the intersection of the involute profile and the trochoidal root fillet, and at edges of prior tooth damage, such as tip-to-root interference. When the profile modifications in the form of tip relief, root relief, or both, are inadequate to compensate for deflection of the gear mesh, tip-to-root interference occurs. The interference can occur at either end of the path of contact, but the damage is usually more severe near the start-of-active-profile (SAP) of the driving gear.

2 Influence of Coatings and Surface Improvements on the Lifetime of Gears (July/August 2004)

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.

3 Case Study Involving Surface Durability and Improved Surface Finish (August 2012)

Gear tooth wear and micropitting are very difficult phenomena to predict analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.

4 Service Behavior of PVD-Coated Gearing Lubricated with Biodegradable Synthetic Ester Oils (January/February 2004)

The following article is concerned with the analysis of the wear-reducing effect of PVD-coatings in gearings. Standardized test methods are used, which under near-real conditions enable statements to be made about the different forms of damage and wear (micropitting, macropitting, scuffing).